\(x^2+x\):

...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 10 2018

\(x^8+x^7+1\)

\(=x^8+x^7-x^2-x+x^2+x+1\)

\(=x^7.\left(x+1\right)-x\left(x+1\right)+\left(x^2+x+1\right)\)

\(=\left(x+1\right)\left(x^7-x\right)+\left(x^2+x+1\right)\)

\(=x.\left(x+1\right)\left(x^6-1\right)+\left(x^2+x+1\right)\)

\(=x.\left(x+1\right)\left(x^3-1\right)\left(x^3+1\right)+\left(x^2+x+1\right)\)

\(=x.\left(x+1\right)\left(x-1\right)\left(x^2+x+1\right)\left(x^3+1\right)+\left(x^2+x+1\right)\)

\(=\left(x^2+x+1\right)\left[x.\left(x+1\right)\left(x-1\right)\left(x^3+1\right)+1\right]\)

\(=\left(x^2+x+1\right)\left[x.\left(x^2-1\right)\left(x^3+1\right)+1\right]\)

\(=\left(x^2+x+1\right)\left[\left(x^3-x\right)\left(x^3+1\right)+1\right]\)

\(=\left(x^2+x+1\right)\left(x^6-x^4+x^3-x+1\right)\)

2 tháng 11 2016

a)x3+x2+4

=x3-x2+2x+2x2-2x+4

=x(x2-x+2)+2(x2-x+2)

=(x+2)(x2-x+2)

b)x3-2x-4

=x3+2x2+2x-2x2-4x-4

=x(x2+2x+2)-2(x2+2x+2)

=(x-2)(x2+2x+2)

21 tháng 9 2017

a )  

b) 

c) x^5 - x^4 - 1 

= x^5 - x^3 - x² - x^4 + x² + x + x^3 - x - 1 

= x²( x^3 - x - 1 ) - x( x^3 - x - 1 ) + ( x^3 - x - 1 ) 

= ( x² - x + 1)( x^3 - x - 1 )

d) 

28 tháng 12 2019

\(x^7+x^2+1\)

\(=x^7+x^6+x^5+x^4+x^3+x^2+x+1\)

\(=x^5\left(x^2+x+1\right)-x^4\left(x^2+x+1\right)+x^2\left(x^2+x+1\right)-x\left(x^2+x+1\right)+\left(x^2+x+1\right)\)

\(=\left(x^2+x+1\right)\left(x^5-x^4+x^2-x+1\right)\)

28 tháng 12 2019

a) \(x^7+x^2+1=\left(x^7-x\right)+\left(x^2+x+1\right)\)

\(=x\left(x^6-1\right)+\left(x^2+x+1\right)=x\left(x^3-1\right)\left(x^3+1\right)+\left(x^2+x+1\right)\)

\(=x\left(x-1\right)\left(x^2+x+1\right)\left(x^3+1\right)+\left(x^2+x+1\right)\)

\(=\left(x^2+x+1\right)\left[x\left(x-1\right)\left(x^3+1\right)+1\right]\)

\(=\left(x^2+x+1\right)\left(x^5-x^4+x^2-x+1\right)\)

b) \(x^7+x^5+1=\left(x^7+x^6+x^5\right)-\left(x^6-1\right)\)

\(=x^5\left(x^2+x+1\right)-\left(x^3-1\right)\left(x^3+1\right)\)

\(=x^5\left(x^2+x+1\right)-\left(x-1\right)\left(x^2+x+1\right)\left(x^3+1\right)\)

\(=\left(x^2+x+1\right)\left[x^5-\left(x-1\right)\left(x^3+1\right)\right]\)

\(=\left(x^2+x+1\right)\left(x^5-x^4+x^3-x+1\right)\)

10 tháng 10 2018

a) \(x^2-6x+8\)

\(=x^2-2\cdot x\cdot3+3^2-1\)

\(=\left(x-3\right)^2-1^2\)

\(=\left(x-3-1\right)\left(x-3+1\right)\)

\(=\left(x-4\right)\left(x-2\right)\)

Còn lại tương tự

a) \(x^2-6x+8=x^2-2x-4x+8\)                     

\(=\left(x^2-2x\right)-\left(4x-8\right)\)

=x(x-2)-4(x-2) = (x-2)(x-4)

2 tháng 6 2017

\(x^3-x=x.\left(x^2-1\right)=x.\left(x^2-1^2\right)=x.\left[\left(x-1\right)\left(x+1\right)\right]=x.\left(x-1\right)\left(x+1\right)\)

Vì (x - 1) ; x ; (x + 1) là 3 số nguyên liên tiếp 

Nên luôn tồn tại một số chia hết cho 3 trong 3 số bất kỳ này 

Mặt khác , cũng có số chia hết cho 2 vì :

Thử xét x lẻ thì :

+ (x - 1) là dương , x là lẻ => (x - 1).x chẵn

+ (x + 1) là dương , x là lẻ => (x + 1).x chẵn 

Ta cũng xét vậy với x chẵn

Từ các ý trên , ta có :

\(\left(x-1\right).x.\left(x+1\right)⋮3\)

\(\left(x-1\right).x.\left(x+1\right)⋮2\)

\(\Rightarrow\left(x-1\right).x.\left(x+1\right)⋮6\) (điều cần chứng minh)

2 tháng 6 2017

\(x3-x=x\left(x^2-1\right)\)=\(x\left(x-1\right)\left(x+1\right)\)là tích của 3 số nguyên liên tiếp nên chia hết cho 2,3 suy ra chia hết cho 6 (dpcm)

26 tháng 7 2018

\(x^4+x^2+1\)

\(=\left[\left(x^2\right)^2+2x^2.1+1^2\right]-x^2\)

\(=\left(x^2+1\right)^2-x^2\)

\(=\left(x^2+x+1\right)\left(x^2-x+1\right)\)

\(\left(x^2-8\right)^2+36\)

\(=x^4-16x^2+64+36\)

\(=\left[\left(x^2\right)^2-2.10x^2+10^2\right]-\left(2x\right)^2\)

\(=\left(x^2-10\right)^2-\left(2x\right)^2\)

\(=\left(x^2-10-2x\right)\left(x^2-10+2x\right)\)

\(4x^4+81\)

\(=\left[\left(2x^2\right)^2+2.2x^2.9+9^2\right]-\left(6x\right)^2\)

\(=\left(2x^2+9\right)-\left(6x\right)^2\)

\(=\left(2x^2+9-6x\right).\left(2x^2+9+6x\right)\)

Tham khảo nhé~

10 tháng 9 2019

Noob quá cặc