Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(3x^3+8x^2+14x+15\)
\(=3x^3+5x^2+3x^2+5x+9x+15\)
\(=x^2\left(3x+5\right)+x\left(3x+5\right)+3\left(3x+5\right)\)
\(=\left(x^2+x+3\right)\left(3x+5\right)\)
Nếu phép chia ko có nghiệm nguyên thì phải có nghiệm a/b (a là ước của hệ số tự do, b là ước đương của hệ số cao nhất)
(trù đa thức bậc 4 ko có nghiệm thì phải dùng hệ số bất định)
Mong bạn hiểu lời giải của mình.Chúc bạn học tốt.
\(3x^3-14x^2+4x+3\)
\(=\left(3x^3-15x^2+9x\right)+\left(x^2-5x+3\right)\)
\(=3x\left(x^2-5x+3\right)+\left(x^2-5x+3\right)\)
\(=\left(3x+1\right)\left(x^2-5x+3\right)\)
3x^3 - 14x^2 + 4x + 3
= (3x^3+x^2) - 15^2- 5x+ 9x+ 3
= x^2(3x+1)- 5x(3x+1)+ 3(3x+1)
= (x^2- 5x+ 3)(3x+1)
\(A=3x^2-14x^2+4x+3\)
Giả sử:
\(A=\left(3x+a\right)\left(x^2+bx+c\right)\)
\(=3x^3+3bx^2+3cx+ax^{2\:}+abx+ac\)
\(=3x^3+\left(3b+a\right)x^2+\left(3c+ab\right)x+ac\)
Ta có:
\(\begin{cases}3b+a=-14\\3c+ab=4\\ac=3\end{cases}\)\(\Rightarrow\begin{cases}a=1\\b=-5\\c=3\end{cases}\)
Vậy \(A=\left(3x+1\right)\left(x^2-5x+3\right)\)
Bài làm
3x2 + 14x - 15
= 3x2 + 9x + 5x - 15
= -( 9x - 3x2 ) - ( 15 - 5x )
= -3x( 3 - x ) - 5( 3 - x )
= ( 3 - x )( -5 - 3x )
# Hokc tốt #