K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 8 2017

2) Bạn làm phép chia đa thức cho đa thức, kẻ hẳn dấu chia ra như tiểu học ấy. Được kết quả là \(\left(4y^2+1\right)\) dư (-2y+6) nhé.

3) a) \(x^2-9=0\Leftrightarrow x^2=9\Leftrightarrow x=\pm3\)
b) \(\left(x^2+1\right)\left(x-3\right)\left(x+2\right)=0\)
\(\Leftrightarrow x^2+1=0\) hoặc x-3=0 hoặc x+2=0
Trường hợp 1 loại vì \(x^2\) không âm, hai trường hợp còn lại tìm được x=3 và x = -2.

4) a)\(x^2-y^2+2y-1=x^2-\left(y^2-2y+1\right)=x^2-\left(y-1\right)^2=\left(x-y+1\right)\left(x+y-1\right)\)

b) \(5x^2-10xy-20z^2+5y^2\)
= \(5\left(x^2-2xy-4z^2+y^2\right)\)
= \(5\left[\left(x-y\right)^2-\left(2z\right)^2\right]\)
= 5 ( x-y-2z ) ( x-y+2z )

5) \(x^3=x\Leftrightarrow x=\pm1\)

Bài 4 :

a) \(x^3+x^2y-xy^2-y^3=x^2\left(x+y\right)-y^2\left(x+y\right)=\left(x^2-y^2\right)\left(x+y\right)=\left(x-y\right)\left(x+y\right)^2\)

b)\(x^2y^2+1-x^2-y^2=\left(x^2y^2-x^2\right)-\left(y^2-1\right)=x^2\left(y^2-1\right)-\left(y^2-1\right)=\left(x^2-1\right)\left(y^2-1\right)=\left(x-1\right)\left(x+1\right)\left(y-1\right)\left(y+1\right)\)

c) \(x^2-y^2-4x+4y=\left(x^2-y^2\right)-\left(4x-4y\right)=\left(x-y\right)\left(x+y\right)-4\left(x-y\right)=\left(x-y\right)\left(x+y-4\right)\)

d)

\(x^2-y^2-2x-2y=\)\(\left(x^2-y^2\right)-\left(2x+2y\right)=\left(x-y\right)\left(x+y\right)-2\left(x+y\right)=\left(x+y\right)\left(x-y-2\right)\)

e) Trùng câu d

f) \(x^3-y^3-3x+3y=\left(x-y\right)\left(x^2-xy+y^2\right)-3\left(x-y\right)=\left(x-y\right)\left(x^2-xy+y^2-3\right)\)

Bài 5:

a) \(x^3-x^2-x+1=0\)

\(\Leftrightarrow x^2\left(x-1\right)-\left(x-1\right)=0\)

\(\Leftrightarrow\left(x^2-1\right)\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+1\right)\left(x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\)

Vậy ...

b) Sửa đề : \(\left(2x-3\right)^2-\left(4x^2-9\right)=0\)

\(\Leftrightarrow\left(2x-3\right)^2-\left(2x-3\right)\left(2x+3\right)=0\)

\(\Leftrightarrow\left(2x-3\right)\left(2x-3-2x-3\right)=0\)

\(\Leftrightarrow\left(2x-3\right)\left(-6\right)=0\)\

\(\Leftrightarrow2x-3=6\)

\(\Leftrightarrow x=\frac{9}{2}\)

vậy........

c) \(x^4+2x^3-6x-9=0\)

\(\Leftrightarrow\left(x^4-9\right)+\left(2x^3-6x\right)=0\)

\(\Leftrightarrow\left(x^2-3\right)\left(x^2+3\right)+2x\left(x^2-3\right)=0\)

\(\Leftrightarrow\left(x^2-3\right)\left(x^2+2x+3\right)=0\)

\(\Leftrightarrow x^2-3=0\Leftrightarrow x^2=3\Leftrightarrow x=\pm\sqrt{3}\)

Vậy

d) \(2\left(x+5\right)-x^2-5x=0\)

\(\Leftrightarrow2\left(x+5\right)-x\left(x+5\right)=0\)

\(\Leftrightarrow\left(2-x\right)\left(x+5\right)=0\Leftrightarrow\left[{}\begin{matrix}2-x=0\\x+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-5\end{matrix}\right.\)

Vậy ........

Bài 2: 

a: \(=x\left(x^2-6x+9\right)=x\left(x-3\right)^2\)

b: \(=\left(x-1\right)\left(x-7\right)\)

c: \(=x\left(x-2y\right)+3\left(x-2y\right)=\left(x-2y\right)\left(x+3\right)\)

a: \(x^2+6xy+9y^2=\left(x+3y\right)^2\)

b: \(4a^4-4a^2b^2+b^4=\left(2a^2-b^2\right)^2\)

\(x^6-2x^3y+y^2=\left(x^3-y\right)^2\)

b: \(\left(x+y\right)^3-\left(x-y\right)^3\)

\(=\left(x+y-x+y\right)\left(x^2+2xy+y^2+x^2-y^2+x^2-2xy+y^2\right)\)

\(=2y\left(3x^2+y^2\right)\)

\(25x^4-10x^2y^2+y^4=\left(5x^2-y^2\right)^2\)

\(-a^2-2a-1=-\left(a+1\right)^2\)

6 tháng 4 2020

\(a.\left(8x^4-4x^3+x^2\right):2x^2=4x^2-2x+\frac{1}{2}\)

\(b.\left(2x^4-x^3+3x^2\right):\left(-\frac{1}{3x^2}\right)=-6x^6+3x^5-9x^4\)

\(c.\left(-18x^3y^5+12x^2y^2-6xy^3\right):6xy=-3x^2y^4+2xy-y^2\)

\(d.\left(\frac{3}{4x^3y^6}+\frac{6}{5x^4y^5}-\frac{9}{10x^5y}\right):-\frac{3}{5x^3y}=-\frac{5}{4y^5}-\frac{2}{xy^4}-\frac{3}{2x^2}\)

6 tháng 4 2020

Thank you

a: \(=7x\left(xy-3\right)\)

d: \(=\left(x+1\right)\left(10x-8y\right)\)

\(=2\left(5x-4y\right)\left(x+1\right)\)

e: \(=\left(x-100\right)\cdot7x\)

f: \(=x\left(x^2-4\right)=x\left(x-2\right)\left(x+2\right)\)

* Dạng toán về phép chia đa thức Bài 9.Làm phép chia: a. 3x3y2: x2 b. (x5+ 4x3–6x2) : 4x2 c.(x3–8) : (x2+ 2x + 4) d. (3x2–6x): (2 –x) e.(x3+ 2x2–2x –1) : (x2+ 3x + 1) Bài 10: Làm tính chia 1. (x3–3x2+ x –3) : (x –3) 2. (2x4–5x2+ x3–3 –3x) : (x2–3) 3. (x –y –z)5: (x –y –z)3 4. (x2+ 2x + x2–4) : (x + 2) 5....
Đọc tiếp

* Dạng toán về phép chia đa thức

Bài 9.Làm phép chia:

a. 3x3y2: x2 b. (x5+ 4x3–6x2) : 4x2 c.(x3–8) : (x2+ 2x + 4) d. (3x2–6x): (2 –x) e.(x3+ 2x2–2x –1) : (x2+ 3x + 1)

Bài 10: Làm tính chia

1. (x3–3x2+ x –3) : (x –3) 2. (2x4–5x2+ x3–3 –3x) : (x2–3) 3. (x –y –z)5: (x –y –z)3 4. (x2+ 2x + x2–4) : (x + 2) 5. (2x3+ 5x2–2x + 3) : (2x2–x + 1) 6. (2x3 –5x2+ 6x –15) : (2x –5)

Bài 11:

1. Tìm n để đa thức x4–x3 + 6x2–x + n chia hết cho đa thức x2–x + 5

2. Tìm n để đa thức 3x3+ 10x2–5 + n chia hết cho đa thức 3x + 1

3*. Tìm tất cả các số nguyên n để 2n2+ n –7 chia hết cho n –2.

Bài 12: Tìm giá trị nhỏ nhất của biểu thức

1. A = x2–6x + 11 2. B = x2–20x + 101 3. C = x2–4xy + 5y2+ 10x –22y + 28

Bài 13: Tìm giá trị lớn nhất của biểu thức

1. A = 4x –x2+ 3 2. B = –x2+ 6x –11

Bài 14: CMR

1. a2(a + 1) + 2a(a + 1) chia hết cho 6 với a là số nguyên
2. a(2a –3) –2a(a + 1) chia hết cho 5 với a là số nguyên

3. x2+ 2x + 2 > 0 với mọi x 4. x2–x + 1 > 0 với mọi x 5. –x2+ 4x –5 < 0 với mọi x

Chương II

* Dạng toán rút gọn phân thức

Bài 1.Rút gọn phân thức:a. 3x(1 - x)/2(x-1) b.6x^2y^2/8xy^5 c3(x-y)(x-z)^2/6(x-y)(x-z)

Bài 2: Rút gọn các phân thức sau:a)x^2-16/4x-x^2(x khác 0,x khác 4) b)x^2+4x+3/2x+6(x khác -3) c) 15x(x+y)^3/5y(x+y)^2(y+(x+y) khác 0). d)5(x-y)-3(y-x)/10(10(x-y)(x khác y) 2x+2y+5x+5y/2x+2y-5x-5y(x khác -y) f)15x(x+y)^3/5y(x+y)^2(x khác y,y khác 0)

Bài 3: Rút gọn, rồi tính giá trị các phân thức sau:

a) A=(2x^2+2x)(x-2)^2/(x^3-4x)(x+1) với x=1/2 b)B=x^3-x^2y+xy2/x^3+y^3 với x=-5,y=10

Bài 4;Rút gọn các phân thức sau:

a) (a+b)^/a+b+c b) a^2+b^2-c^2+2ab/a^2-b^2+c^2+2ac c) 2x^3-7x^2-12x+45/3x^3-19x^2+33x-9

2
31 tháng 12 2017

Bài 12:

1) A = x2 - 6x + 11

= (x2 - 6x + 9) + 2

= (x - 3)2 + 2

Ta có: (x - 3)2 ≥ 0 ∀ x

Dấu ''='' xảy ra khi x - 3 = 0 ⇔ x = 3

Do đó: (x - 3)2 + 2 ≥ 2

Hay A ≥ 2

Dấu ''='' xảy ra khi x = 3

Vậy Min A = 2 tại x = 3

2) B = x2 - 20x + 101

= (x2 - 20x + 100) + 1

= (x - 10)2 + 1

Ta có: (x - 10)2 ≥ 0 ∀ x

Dấu ''='' xảy ra khi x - 10 = 0 ⇔ x = 10

Do đó: (x - 10)2 + 1 ≥ 1

Hay B ≥ 1

Dấu ''='' xảy ra khi x = 10

Vậy Min B = 1 tại x = 10

27 tháng 11 2019

Sao bạn KO tách ra cho dễ nhìn

AH
Akai Haruma
Giáo viên
29 tháng 11 2018

Bài 1:

a) \((x-5)(3x+3)-3x(x-3)+3x+7\)

\(=3(x-5)(x+1)-3x(x-3)+3x+7\)

\(=3(x^2+x-5x-5)-(3x^2-9x)+3x+7\)

\(=3(x^2-4x-5)-(3x^2-9x)+3x+7\)

\(=-8\)

b) \((x-3)(x^2+3x+9)-(54+x^3)\)

\(=(x-3)(x^2-3.x+3^2)-(54+x^3)\)

\(=x^3-3^3-(54+x^3)=-81\)

c) Sửa đề:

\((3x+y)(9x^2-3xy+y^2)-(3x-y)(9x^2+3xy+y^2)\)

\(=(3x+y)[(3x)^2-3x.y+y^2]-(3x-y)[(3x)^2+3x.y+y^2]\)

\(=(3x)^3+y^3-[(3x)^3-y^3]\)

\(=2y^3\)

AH
Akai Haruma
Giáo viên
29 tháng 11 2018

Câu 2:

\(a)14x^2y^2-21xy^2+28x^2y\)

\(=7xy(2xy-3y+4x)\)

b) \((x+y)^2-4x^2\)\(=(x+y)^2-(2x)^2=(x+y-2x)(x+y+2x)\)

\(=(y-x)(3x+y)\)

c) \(2x^2-2xy-5x+5y\)

\(=(2x^2-2xy)-(5x-5y)\)

\(=2x(x-y)-5(x-y)=(x-y)(2x-5)\)

d) \(2xy-x^2-y^2+16\)

\(=16-(x^2+y^2-2xy)=4^2-(x-y)^2\)

\(=[4-(x-y)][4+(x-y)]=(4-x+y)(4+x-y)\)

Bài 1: 

a: \(M=3\left[\left(x+y\right)^2-2xy\right]-\left[\left(x+y\right)^3-3xy\left(x+y\right)\right]+1\)

\(=3\left(4-2xy\right)-\left[8-6xy\right]+1\)

\(=12-6xy-8+6xy+1=5\)

b: \(N=\left(2x-y\right)^3+3\left(2x-y\right)^2+3\left(2x-y\right)+11\)

\(=9^3+3\cdot9^2+3\cdot9+11\)

=729+243+27+11

=729+270+11=1010