Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(x^2y-xy^2-3x+3y\)
\(=xy\left(x-y\right)-3\left(x-y\right)\)
\(=\left(x-y\right)\left(xy-3\right)\)
b) \(5x^4-20=5\left(x^4-4\right)\)
\(=5\left(x^2-2\right)\left(x^2+2\right)\)
\(=5\left(x^2+2\right)\left(x-\sqrt{2}\right)\left(x+\sqrt{2}\right)\)
c) \(x^2-9x+20\)
\(=x^2-4x-5x+20\)
\(=x\left(x-4\right)-5\left(x-4\right)\)
\(=\left(x-4\right)\left(x-5\right)\)
\(x^2y-xy^2-3x+3y=xy.\left(x-y\right)-3.\left(x-y\right)=\left(x-y\right).\left(xy-3\right)\)
\(5x^4-20=5.\left[\left(x^2\right)^2-2^2\right]=5.\left(x^2-2\right).\left(x^2+2\right)\)
\(x^2-9x+20=\left(x^2-2.4,5x+4,5^2\right)-0,25=\left(x-20,25\right)^2-0,5^2\)\(=\left(x-20,25+0,5\right).\left(x-20,25-0,5\right)=\left(x-19,75\right).\left(x-20,75\right)\)
Tham khảo nhé~
\(x^3+2x^2+x\)
\(=x\left(x^2+2x+1\right)\)
\(=x\left(x+1\right)^2\)
\(-3xy^2+x^2y^2-5x^2y\)
\(=-xy\left(3y+xy-5x\right)\)
\(x\left(y-1\right)+3\left(y^3+2y+1\right)\)
\(=3y^3+6y+3+xy-x\)
Xem lại nhé ko phân tích được
\(12xy^2-12xy+3x\)
\(=3x\left(4y^2-4y+1\right)\)
\(=3x\left(2y-1\right)^2\)
\(10x^2\left(x+y\right)-5\left(2x+2y\right)y^2\)
\(=10x^2\left(x+y\right)-10\left(x+y\right)y^2\)
\(=10\left(x+y\right)\left(x-y\right)\left(x+y\right)\)
\(=10\left(x+y\right)^2\left(x-y\right)\)
Phân tích đa thức thành nhân tử:
a) \(xy+y^2-x-y=y\left(x+y\right)-\left(x+y\right)=\left(x+y\right)\left(y-1\right)\)
b) \(25-x^2+4xy-4y^2=25-\left(x^2-4xy+4y^2\right)=25-\left(x-2y\right)^2\)
\(=\left(5-x+2y\right)\left(5+x-2y\right)\)
Rút gọn biểu thức;
\(A=\left(6x+1\right)^2+\left(3x-1\right)^2-2\left(3x-1\right)\left(6x+1\right)\)
\(=\left[\left(6x+1\right)-\left(3x-1\right)\right]^2=\left(6x+1-3x+1\right)=\left(3x+2\right)^2\)
Tìm a để đa thức.. Bạn chia cột dọ thì da
\(xy+y^2-x-y=\left(xy+y^2\right)-\left(x+y\right)=y\left(x+y\right)-\left(x+y\right)=\left(y-1\right)\left(x+y\right)\)b)\(25-\left(x^2-4xy+4y^2\right)=5^2-\left(x-2y\right)^2=\left(x-2y+5\right)\left(5-x+2y\right)\)
Ta có:
\(\left(x-3\right)^3-\left(x-3\right)\left(x^2+3x+9\right)+6\left(x+1\right)^2=\left(x-3\right)^3-\left(x-3\right)^3+6\left(x+1\right)^2\)
\(=6\left(x+1\right)^2\)
\(6^{5x+2}=36^{3x-4}\)
\(\Rightarrow6^{5x+2}=6^{2.\left(3x-4\right)}\)
\(\Rightarrow5x+2=2\left(3x-4\right)\)
\(\Rightarrow5x+2=6x-8\)
\(\Rightarrow-x=-10\)
\(\Rightarrow x=10\)
Vậy x = 10
\(6^{5x+2}=36^{3x-4}\)
\(6^{5x+2}=6^{2.\left(3x-4\right)}\)
\(\Rightarrow5x+2=6x-8\)
\(2+8=6x-5x\Leftrightarrow x=10\)
Chúc bạn học tốt!!!
\(3x^2y-6xy^2+3xy\)
\(=3xy\left(x-2y+1\right)\)
\(x^2-5x=0\)
\(\Leftrightarrow x\left(x-5\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x-5=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=5\end{cases}}\)
\(x\left(x-1\right)-3x+3=0\)
\(\Leftrightarrow x\left(x-1\right)-3\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(x-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-3=0\\x-1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=3\\x=1\end{cases}}\)
Bài 1 :
\(3x^2y-6xy^2+3xy\)
\(=3xy\left(x-2y+1\right)\)
a, x2y - xy2 - 3x + 3y
= ( x2y - xy2 ) + ( 3x - 3y )
= xy( x - y ) + 3( x - y )
= ( x - y ) + ( xy + 3 )
b, 5x4-20
=5x4 - 5.4
=5( x4 - 4 )