Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(1,\\ a,=4\left(x-2\right)^2+y\left(x-2\right)=\left(4x-8+y\right)\left(x-2\right)\\ b,=3a^2\left(x-y\right)+ab\left(x-y\right)=a\left(3a+b\right)\left(x-y\right)\\ 2,\\ a,=\left(x-y\right)\left[x\left(x-y\right)^2-y-y^2\right]\\ =\left(x-y\right)\left(x^3-2x^2y+xy^2-y-y^2\right)\\ b,=2ax^2\left(x+3\right)+6a\left(x+3\right)\\ =2a\left(x^2+3\right)\left(x+3\right)\\ 3,\\ a,=xy\left(x-y\right)-3\left(x-y\right)=\left(xy-3\right)\left(x-y\right)\\ b,Sửa:3ax^2+3bx^2+ax+bx+5a+5b\\ =3x^2\left(a+b\right)+x\left(a+b\right)+5\left(a+b\right)\\ =\left(3x^2+x+5\right)\left(a+b\right)\\ 4,\\ A=\left(b+3\right)\left(a-b\right)\\ A=\left(1997+3\right)\left(2003-1997\right)=2000\cdot6=12000\\ 5,\\ a,\Leftrightarrow\left(x-2017\right)\left(8x-2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=2017\\x=\dfrac{1}{4}\end{matrix}\right.\\ b,\Leftrightarrow\left(x-1\right)\left(x^2-16\right)=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=4\\x=-4\end{matrix}\right.\)
Cái này chưa học bt làm mấy câu
b. x^2 + 2x - 3
= x^2 + 3x - x - 3
= x ( x - 1 ) + 3 ( x - 1 )
= ( x + 3 ) ( x - 1 )
\(4x^2-3x-4\)
\(=\left(2x\right)^2-2.2x.\frac{3}{4}+\frac{9}{16}-\frac{73}{16}\)
\(=\left(2x-\frac{3}{4}\right)^2-\frac{73}{16}\)
\(=\left(2x-\frac{3}{4}\right)^2-\left(\frac{\sqrt{73}}{4}\right)^2\)
\(=\left(2x-\frac{3}{4}-\frac{\sqrt{73}}{4}\right)\left(2x-\frac{3}{4}+\frac{\sqrt{73}}{4}\right)\)
\(=\left(2x-\frac{3+\sqrt{73}}{4}\right)\left(2x+\frac{-3+\sqrt{73}}{4}\right)\)
\(x^2+2x-3\)
\(=x^2-x+3x-3\)
\(=x\left(x-1\right)+3\left(x-1\right)\)
\(=\)\(\left(x+3\right)\left(x-1\right)\)
\(\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)-24\)
\(=\left(x^2+5x+4\right)\left(x^2+5x+6\right)-24\) \(\left(1\right)\)
đặt \(x^2+5x+5=t\)
\(\left(1\right)\)\(=\) \(\left(t-1\right)\left(t+1\right)-24\)
\(=t^2-1-24\)
\(=t^2-25\)
\(=\left(t-5\right)\left(t+5\right)\)
hay \(\left(1\right)=\left(x^2+5x+5-5\right)\left(x^2+5x+5+5\right)\)
\(=\left(x^2+5x\right)\left(x^2+5x+10\right)\)
\(=x\left(x+5\right)\left(x^2+5x+10\right)\)
học tốt
a) x2 + 6x + 9 = x2 + 2 . x . 3 + 32 = (x + 3)2
b) 10x – 25 – x2 = -(-10x + 25 +x2) = -(25 – 10x + x2)
= -(52 – 2 . 5 . x – x2) = -(5 – x)2
c) 8x3 - 1/8 = (2x)3 – (1/2)3 = (2x - 1/2)[(2x)2 + 2x . 12 + (1/2)2]
= (2x - 1/2)(4x2 + x + 1/4)
d)1/25x2 – 64y2 = (1/5x)2(1/5x)2- (8y)2 = (1/5x + 8y)(1/5x - 8y)
\(\left(x+1\right).\left(x+2\right).\left(x+3\right).\left(x+4\right)-24\)
\(=[\left(x+1\right).\left(x+4\right)].[\left(x+2\right).\left(x+3\right)]-24\)
\(=\left(x^2+4x+x+4\right).\left(x^2+3x+2x+6\right)-24\)
\(=\left(x^2+5x+4\right).\left(x^2+5x+6\right)-24\)
Ta đặt \(n=x^2+5x+4\)
Lúc này biểu thức trở thành \(n.\left(n+2\right)-24\)
\(=n^2+2n-24\)
\(=n^2+2n+1-25\)
\(=\left(n+1\right)^2-5^2\)
\(=\left(n+1-5\right).\left(n+1+5\right)\)
\(=\left(n-4\right).\left(n+6\right)\)
\(=\left(x^2+5x+4-4\right).\left(x^2+5x+4+6\right)\)
\(=\left(x^2+5x\right).\left(x^2+5x+10\right)\)
\(x^3\left(2+x\right)^2-\left(x+2\right)^2+1-x^3\\ =\left(x+2\right)^2\left(x^3-1\right)-\left(x^3-1\right)\\ =\left[\left(x+2\right)^2-1\right]\left(x^3-1\right)\\ =\left(x-1\right)\left(x^2+x+1\right)\left(x^2+4x+3\right)=\left(x-1\right)\left(x+1\right)\left(x+3\right)\left(x^2+x+1\right)\)