Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
đặt \(x^2+4x+8=a\)
=> \(A=a^2+3ax+2x^2=a^2+ax+2ax+2x^2=a\left(a+x\right)+2x\left(a+x\right)\)
\(=\left(a+x\right)\left(a+2x\right)\)
b) ta có
\(B=\left(x+1\right)\left(x+7\right)\left(x+3\right)\left(x+5\right)+15=\left(x^2+8x+7\right)\left(x^2+8x+15\right)+15\)
đặt \(x^2+8x+11=a\)
=> \(B=\left(a-4\right)\left(a+4\right)+15=a^2-16+15=a^2-1=\left(a-1\right)\left(a+1\right)\)
\(=\left(x^2+8x+10\right)\left(x^2+8x+12\right)=\left(x^2+8x+10\right)\left(x^2+6x+2x+12\right)\)
\(=\left(x^2+8x+10\right)\left[x\left(x+6\right)+2\left(x+6\right)\right]=\left(x^2+8x+10\right)\left(x+6\right)\left(x+2\right)\)
b)(x2+x+1)(x2+x+2)-12
Đặt t=x2+x+1
t(t+1)-12=t2+t-12
=(t-3)(t+4)=(x2+x+1-3)(x2+x+1+4)
=(x2+x-2)(x2+x+5)
=(x-1)(x+2)(x2+x+5)
c)(x2+8x+7)(x2+8x+15)+15
Đặt t=x2+8x+7
t(t+8)+15=t2+8t+15
=(t+3)(t+5)
=(x2+8x+7+3)(x2+8x+7+15)
=(x2+8x+10)(x2+8x+22)
d)(x+2)(x+3)(x+4)(x+5)-24
=(x2+7x+10)(x2+7x+12)-24
Đặt t=x2+7x+10
t(t+2)-24=(t-4)(t+6)
=(x2+7x+10-4)(x2+7x+10+6)
=(x2+7x+6)(x2+7x+16)
=(x+1)(x+6)(x2+7x+16)
a/ Đặt x2 + 4x + 8 = a
Thì đa thức ban đầu thành
a2 + 3ax + 2x2 = (a2 + 2ax + x2) + (ax + x2)
= (a + x)2 + x(a + x) = (a + x)(a + 2x)
a)x4+2x3+5x2+4x-12
=(x4+2x3+x2)+(4x2+4x)-12
=(x2+x)2+4(x2+x)-12
Đặt t=x2+x
=t2+4t-12=(t-2)(t+6)
=(x2+x-2)(x2+x+6)
=(x-1)(x+2)(x2+x+6)
b)(x+1)(x+2)(x+3)(x+4)+1
=(x2+5x+4)(x2+5x+6)+1
Đặt x2+5x+4=t
t(t+2)+1=t2+2t+1
=(t+1)2=(x2+5x+4+1)2
=(x2+5x+5)2
c)(x+1)(x+3)(x+5)(x+7)+15
=(x2+8x+7)(x2+8x+15)+15
Đặt t=x2+8x+7
t(t+8)+15=(t+3)(t+5)
=(x2+8x+7+3)(x2+8x+7+5)
=(x2+8x+10)(x+2)(x+6)
d)(x+1)(x+2)(x+3)(x+4)-24
=(x2+5x+4)(x2+5x+6)-24
Đặt t=x2+5x+4
t(t+2)-24=(t-4)(t+6)
=(x2+5x+4-4)(x2+5x+4+6)
=x(x+5)(x2+5x+10)
a, 4y(x-1)-(1-x)
=(x-1)(4y+1)
b,3x(z+2)+5(-x-2)
=3x(z+2)-5(x+2)
=(z+2)(3x-5)
Đặt x^2-3x-2=t =>(t+4)(t-4)+12=t-16+12=t-4=(t+2)(t-2)
=>(x^2-3x-2+2)(x^2-3x-2-2)=(x^2-3x)(x^2-3x-4)
1, x2+3xy+2y2= x2+xy+2xy+2y2=x(x+y)+2y(x+y)=(x+2y)(x+y)
2, x(x+2)(x+3)(x+5)+9=x(x+5)(x+2)(x+3)+9=(x2+5x)(x2+5x+6)+9
Đặt x2+5x=t, ta có
t(t+6)+9=t2+6t+9=(t+3)2=(x2+5x+3)2=(x2+8)2
3, x2+2xy+y2+2x+2y-15=(x+y)2+2(x+y)-15=(x+y)2+2(x+y)+1-16=(x+y+1)2-42
= (x+y+1-4)(x+y+1+4)=(x+y-3)(x+y+5)
4, 4x4y4+1=4x4y4+4x2y2+1-4x2y2=(2x2y2+1)2-(2xy)2=(2x2y2+1-2xy)(2x2y2+1+2xy)
a )\(x^2-2x-4y^2-4y=\left(x^2-2x+1\right)-\left(4y^2+4y+1\right)\)
\(=\left(x-1\right)^2-\left(2y+1\right)^2=\left(x-2y-2\right)\left(x+2y\right)\)
b )\(x^4+2x^3-4x-4=\left(x^4+2x^3+x^2\right)-\left(x^2+4x+4\right)\)
\(=\left(x^2+x\right)^2-\left(x+2\right)^2=\left(x^2+2x+2\right)\left(x^2-2\right)\)
c ) \(x^2\left(1-x^2\right)-4-4x^2=x^2-x^4-4-4x^2\)
\(=x^2-\left(x^2+2\right)^2=\left(x-x^2-2\right)\left(x^2+x+2\right)\)
a) Đặt \(x^2=y\Rightarrow x^4+x^2-20=y^2+y-20=y^2-4y+5y-20=\left(y-4\right)\left(y+5\right)\)
Thay trở lại, ta có: \(x^4+x^2-20=\left(x^2-4\right)\left(x^2+5\right)=\left(x-2\right)\left(x+2\right)\left(x^2+5\right)\)
b) Đặt \(x-y=z\Rightarrow\left(x-y\right)^2+4x-4y-12=z^2+4z-12=z^2-2z+6z-12=\left(z-2\right)\left(z+6\right)\)
Thay trở lại ta có kết quả sau: \(\left(x-y-2\right)\left(x-y+6\right)\)