Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) x2 + 6x + 9 = x2 + 2 . x . 3 + 32 = (x + 3)2
b) 10x – 25 – x2 = -(-10x + 25 +x2) = -(25 – 10x + x2)
= -(52 – 2 . 5 . x – x2) = -(5 – x)2
c) 8x3 - 1/8 = (2x)3 – (1/2)3 = (2x - 1/2)[(2x)2 + 2x . 12 + (1/2)2]
= (2x - 1/2)(4x2 + x + 1/4)
d)1/25x2 – 64y2 = (1/5x)2(1/5x)2- (8y)2 = (1/5x + 8y)(1/5x - 8y)
1)x2-8x-9
= x^2 - 9x +x -9
= x(x+1) - 9 (x+1)
= (x-9) (x+1)
2)x2+3x-18
3)x3-5x2+4x
=x^3 - 4x^2 - x^2 + 4x
= x^2 (x-1) - 4x(x-1)
= (x^2 - 4x) (x-1)
= x(x-4)(x-1)
4)x3-11x2+30x
5)x3-7x-6
6)x16-64
\(=\left(x^8\right)^2-8^2\)
\(=\left(x^8-8\right)\left(x^8+8\right)\)
7)x3-5x2+8x-4
8)x2-3x+2
= x^2 - 2x - x +2
= x(x-1) -2(x-1)
= (x-2)(x-1)
1) \(\left(x-9\right)\left(x+1\right)\) 2) \(\left(x-3\right)\left(x+6\right)\) 3) \(x\left(x-4\right)\left(x-1\right)\)
4) \(x\left(x-6\right)\left(x-5\right)\) 5)\(\left(x-3\right)\left(x+1\right)\left(x+2\right)\) 6) ........
7) \(\left(x-1\right)\left(x-2\right)\left(x-2\right)\) 8) \(\left(x-2\right)\left(x-1\right)\)
mik làm phần b nhé vì phần a có người làm rồi
x4-5x2+4=x4-x2-4x2+4=(x4-x2)-(4x2-4)
=x2(x2-1)-4(x2-1)
=(x2-1)(x2-4)
=(x-1)(x+1)(x-2)(x+2)
Bài 1:
a, x2-3xy-10y2
=x2+2xy-5xy-10y2
=(x2+2xy)-(5xy+10y2)
=x(x+2y)-5y(x+2y)
=(x+2y)(x-5y)
b, 2x2-5x-7
=2x2+2x-7x-7
=(2x2+2x)-(7x+7)
=2x(x+1)-7(x+1)
=(x+1)(2x-7)
Bài 2:
a, x(x-2)-x+2=0
<=>x(x-2)-(x-2)=0
<=>(x-2)(x-1)=0
<=>\(\orbr{\begin{cases}x-2=0\\x-1=0\end{cases}}\)<=>\(\orbr{\begin{cases}x=2\\x=1\end{cases}}\)
b, x2(x2+1)-x2-1=0
<=>x2(x2+1)-(x2+1)=0
<=>(x2+1)(x2-1)=0
<=>x2+1=0 hoặc x2-1=0
1, x2+1=0 2, x2-1=0
<=>x2= -1(loại) <=>x2=1
<=>x=1 hoặc x= -1
c, 5x(x-3)2-5(x-1)3+15(x+2)(x-2)=5
<=>5x(x-3)2-5(x-1)3+15(x2-4)=5
<=>5x(x2-6x+9)-5(x3-3x2+3x-1)+15x2-60=5
<=>5x3-30x2+45x-5x3+15x2-15x+5+15x2-60=5
<=>30x-55=5
<=>30x=55+5
<=>30x=60
<=>x=2
d, (x+2)(3-4x)=x2+4x+4
<=>(x+2)(3-4x)=(x+2)2
<=>(x+2)(3-4x)-(x+2)2=0
<=>(x+2)(3-4x-x-2)=0
<=>(x+2)(1-5x)=0
<=>\(\orbr{\begin{cases}x+2=0\\1-5x=0\end{cases}}\)<=>\(\orbr{\begin{cases}x=-2\\-5x=-1\end{cases}}\)<=>\(\orbr{\begin{cases}x=-2\\x=\frac{-1}{-5}\end{cases}}\)<=>\(\orbr{\begin{cases}x=-2\\x=\frac{1}{5}\end{cases}}\)
Bài 3:
a, Sắp xếp lại: x3+4x2-5x-20
Thực hiện phép chia ta được kết quả là x2-5 dư 0
b, Sau khi thực hiện phép chia ta được :
Để đa thức x3-3x2+5x+a chia hết cho đa thức x-3 thì a+15=0
=>a= -15
a) \(x^4-9x^2\)
\(=x^2\left(x^2-9\right)\)
\(=x^2\left(x-3\right)\left(^{ }x+3\right)\)
b) \(3x^2-12x+12\)
\(=3x\left(x^2-4x+4\right)\)
\(=3x\left(x-2\right)^2\)
c) \(x^2+5x+6\)
\(=x^2+3x+2x+6\)
\(=x\left(x+3\right)+2\left(x+3\right)\)
\(=\left(x+3\right)\left(x+2\right)\)
x4 - 9x2
= x4 - ( 3x )2
= ( x2 - 3x ) ( x2 + 3x )
b) 3x3 - 12x2 + 12x
= 3x3 - 6x2 - 6x2 + 12x
= 3x2( x - 2 ) - 6x ( x - 2 )
= ( 3x2 - 6x ) ( x - 2 )
= 3x ( x - 2 ) ( x - 2 )
= 3x ( x- 2 )2
c) x2 + 5x + 6
= x2 + 2x + 3x + 6
= x ( x + 2 ) + 3 ( x + 2 )
= ( x + 3 ) ( x + 2 )
a) \([(x-y)3 + (y-z)3]+ (z-x)3\)=\(\left(x-y+y-z\right)\left[\left(x-y\right)^2-\left(x-y\right)\left(y-z\right)+\left(y-z\right)^2\right]-\left(x-z\right)^3\)
\(=\left(x-z\right)\left[\left(\left(x-y\right)^2-\left(x-y\right)\left(y-z\right)+\left(y-z\right)^2-\left(x-z\right)^2\right)\right]\)
\(=\left(x-z\right)\left[\left(x-y\right)\left(x-y-y+z\right)+\left(y-z-x+z\right)\left(y-z+x-z\right)\right]=\left(x-z\right)\left[\left(x-2y+z\right)\left(x+z\right)-\left(x-y\right)\left(x+y-2z\right)\right]\)
\(=\left(x-z\right)\left(x-y\right)\left(x-2y+z-x-y+2z\right)=\left(x-z\right)\left(x-y\right)\left(z-y\right)3\)
b) \(=y^2\left(x^2y-x^3+z^3-z^2y\right)-z^2x^2\left(z-x\right)=y^2\left[-y\left(z^2-x^2\right)-\left(z^3-x^3\right)\right]-z^2x^2\left(z-x\right)\)
\(=y^2\left(z-x\right)\left(-yz-xy-z^2-zx-x^2\right)-z^2x^2\left(z-x\right)=\left(z-x\right)\left(-y^3z-xy^2-z^2y^2-xyz-x^2y^2-z^2x^2\right)\)
đến đây coi như là thành nhân tử rồi nha. em muốn gọn thì ráng ngồi nghĩ rồi tách nha. chỉ cần nhóm mấy cái có ngoặc giống nhau là đc. k khó đâu. chịu khó nghĩ để rèn luyện nha
c) \(x^8+2x^4+1-x^4=\left(x^4+1\right)^2-x^4=\left(x^4+1-x^2\right)\left(x^4+1+x^2\right)\)
\(\left(9a^3-6a^2\right)+\left(6a^2-4a\right)+\left(-9a+6\right)=3a^2\left(3a-2\right)+2a\left(3a-2\right)-3\left(3a-2\right)=\left(3a-2\right)\left(3a^2+2a-3\right)\)
d) em sửa đề đi. đề sai rồi. đồng nhất hệ số phải có dấu bằng nha.
có gì liên hệ chị. đúng nha ;)
1, x3+ 6x2+11x+6
= x3 + 2x2 + 4x2 + 8x + 3x + 6
= x2(x + 2) + 4x(x + 2) + 3(x + 2)
= (x + 2)(x2 + 4x + 3)
2, x4+3x3-7x2-27x-18
= x4 + 3x3 - 9x2 + 2x2 - 27x -18
= (x4 - 9x2) + (3x3 - 27x) + (2x2 - 18)
= x2(x2 - 9) + 3x(x2 - 9) + 2(x2 - 9)
= (x2 - 9)(x2 + 3x + 2)
= (x + 3)(x - 3)(x2 + 3x + 2)
3, x3-8x2+x+42
= x3 - 7x2 - x2 + 7x - 6x + 42
= (x3 - 7x2) - (x2 - 7x) - (6x - 42)
= x2(x - 7) - x(x - 7) - 6(x - 7)
= (x - 7)(x2 - x - 6)
4, x4+5x3-7x2-41x-30
= x4 + x3 + 4x3 - 4x2 - 11x2 - 11x - 30x - 30
= (x4 + x3) + (4x3 - 4x2) - (11x2 + 11x) - (30x + 30)
= x3(x + 1) + 4x2(x + 1) - 11x(x + 1) - 30(x + 1)
= (x3 + 4x2 - 11x - 30)(x + 1)
5, x5+x-1
= x5 - x4 + x3 + x4 - x3 + x2 - x2+ x -1
= x3(x2 - x + 1)+ x2(x2 - x + 1)- (x2 - x + 1)
= (x2 - x + 1)(x3 + x2 - 1)
6, x5-x4-1
= x5 - x3 - x2 - x4 + x2 + x + x3 - x - 1
= x2(x3 - x - 1) - x(x3 - x - 1) + (x3 - x - 1)
= (x2 - x + 1)(x3 - x - 1)
1, x 3+ 6x 2+11x+6
= x 3 + 2x 2 + 4x 2 + 8x + 3x + 6
= x 2 ﴾x + 2﴿ + 4x﴾x + 2﴿ + 3﴾x + 2﴿
= ﴾x + 2﴿﴾x 2 + 4x + 3﴿
2, x 4+3x 3‐7x 2‐27x‐18
= x 4 + 3x 3 ‐ 9x 2 + 2x 2 ‐ 27x ‐18
= ﴾x 4 ‐ 9x 2 ﴿ + ﴾3x 3 ‐ 27x﴿ + ﴾2x 2 ‐ 18﴿
= x 2 ﴾x 2 ‐ 9﴿ + 3x﴾x 2 ‐ 9﴿ + 2﴾x 2 ‐ 9﴿
= ﴾x 2 ‐ 9﴿﴾x 2 + 3x + 2﴿
=﴾x + 3﴿﴾x ‐ 3﴿﴾x 2 + 3x + 2﴿
3, x 3‐8x 2+x+42
= x 3 ‐ 7x 2 ‐ x 2 + 7x ‐ 6x + 42
= ﴾x 3 ‐ 7x 2 ﴿ ‐ ﴾x 2 ‐ 7x﴿ ‐ ﴾6x ‐ 42﴿
= x 2 ﴾x ‐ 7﴿ ‐ x﴾x ‐ 7﴿ ‐ 6﴾x ‐ 7﴿
= ﴾x ‐ 7﴿﴾x 2 ‐ x ‐ 6﴿
4, x 4+5x 3‐7x 2‐41x‐30
= x 4 + x 3 + 4x 3 ‐ 4x 2 ‐ 11x 2 ‐ 11x ‐ 30x ‐ 30
= ﴾x 4 + x 3 ﴿ + ﴾4x 3 ‐ 4x 2 ﴿ ‐ ﴾11x 2 + 11x﴿ ‐ ﴾30x + 30﴿
= x 3 ﴾x + 1﴿ + 4x 2 ﴾x + 1﴿ ‐ 11x﴾x + 1﴿ ‐ 30﴾x + 1﴿
= ﴾x 3 + 4x 2 ‐ 11x ‐ 30﴿﴾x + 1﴿
5, x 5+x‐1
= x 5 ‐ x 4 + x 3 + x 4 ‐ x 3 + x 2 ‐ x 2+ x ‐1
= x 3 ﴾x 2 ‐ x + 1﴿+ x 2 ﴾x 2 ‐ x + 1﴿‐ ﴾x 2 ‐ x + 1﴿
= ﴾x 2 ‐ x + 1﴿﴾x 3 + x 2 ‐ 1﴿ 6, x 5‐x 4‐1
= x 5 ‐ x 3 ‐ x 2 ‐ x 4 + x 2 + x + x 3 ‐ x ‐ 1
= x 2 ﴾x 3 ‐ x ‐ 1﴿ ‐ x﴾x 3 ‐ x ‐ 1﴿ + ﴾x 3 ‐ x ‐ 1﴿
= ﴾x 2 ‐ x + 1﴿﴾x 3 ‐ x ‐ 1﴿
\(x^4-5x^2+4\)
=\(\left(x^4-x^2\right)-\left(4x^2-4\right)\)
=\(x^2\left(x^2-1\right)-4\left(x^2-1\right)\)
=\(\left(x^2-4\right)\left(x^2-1\right)\)
\(x^2+5x-6\)
=\(x^2-x+6x-6\)
=\(x\left(x-1\right)+6\left(x-1\right)\)
=\(\left(x+6\right)\left(x-1\right)\)
2 câu cuối làm tương tự nha câu 2 nha