Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
viết lại cho đối xưng thì thế này
\(\left(-x+y+z\right)\left(x-y+z\right)\left(x+y-z\right)\)
x(y+z)^2 - y(z-x)^2 +z(x+y)^2 - x^3 + y^3 - z^3 - 4xyz
=xy^2+2xyz+xz^2-yz^2+2xyz-x^2y+x^2z+2xyz+zy^2-x^3+y^3-z^3-4xyz
=xy^2+xz^2-yz^2-x^2y+x^2z+y^2z-x^3+y^3-z^3+2xyz
=(xy^2+2xyz+xz^2)-x^3-(yz^2+2xyz+x^2y)+y^3+(x^2z+2xyz+y^2z)-z^3
=x[(y+z)^2-x^2)-y[(z+x)^2-y^2]+z[(x+y)^2-z^2]
=x(-x+y+z)(x+y+z)-y(x-y+z)(x+y+z)+z(x+y-z)(x+y+z)
=(x+y+z)[-x^2+xy+xz-xy+y^2-yz+xz+yz-z^2]
=(x+y+z)[-x(x-y-z)-y(x-y-z)+z(x-y-z)]
=(x+y+z)(x-y-z)(z-x-y)
y(x+y)+yz(y+z)+xz(x+z)+2xyz
= xy(x + y) + yz(y + z) + xyz + xz(x + z) + xyz
= xy(x + y) + yz(y + z + x) + xz(x + z + y)
= xy(x + y) + z(x + y + z)(y + x)
= (x + y)(xy + zx + zy + z²)
= (x + y)[x(y + z) + z(y + z)]
= (x + y)(y + z)(z + x)
Phân tích đa thức thành nhân tử:(x-y)3 + (y-z)3 + (z-x)3x2y2(y-x)+y2z2(z-y)-z2x2(z-x)x8+x4+19a3-13a+6Phân tích đa thức thành nhân tử bằng phương pháp đồng nhất hệ số:x4-3x3+6x2-5x+3 bấm vào đó đi
\(x^2y+y^2x+x^2z+z^2x+y^2z+z^2y+2xyz\)..
\(=\left(x^2y+z^2y+2xyz\right)+\left(y^2x+y^2z\right)+\left(z^2x+x^2z\right)\).
\(=y\left(x+z\right)^2+y^2\left(x+z\right)+xz\left(x+z\right)\)
\(=\left(xy+yz\right)\left(x+z\right)+\left(x+z\right)\left(y^2+xz\right)\).
\(=\left(x+z\right)\left(xy+yz+y^2+xz\right)\).
\(=\left(x+z\right)\left[x\left(y+z\right)+y\left(y+z\right)\right]\).
\(=\left(x+z\right)\left(x+y\right)\left(y+z\right)\).
nhấn vào đây nhé có 2 cách làm: Chuyên đề Bồi dưỡng học sinh giỏi - Phân tích đa thức thành nhân tử - Giáo Án, Bài Giảng
t i c k mk!! 536546456545576768978045362546115346456575676868784675462552
Câu hỏi của Kim Lê Khánh Vy - Toán lớp 8 - Học toán với OnlineMath
Ta có :
\(\left(x+y\right)\left(x^2-y^2\right)+\left(y+z\right)\left(y^2-z^2\right)+\left(z+x\right)\left(z^2-x^2\right)\)
\(=\left(x+y\right)^2.\left(x-y\right)+\left(y+z\right).\left(y^2-x^2+x^2-z^2\right)+\left(z+x\right)\left(z^2-x^2\right)\)
\(=\left(x+y\right)\left(x^2-y^2\right)-\left(y+z\right)\left(x^2-y^2+z^2-x^2\right)+\left(z+x\right)\left(z^2-x^2\right)\)
\(=\left(x+y\right)\left(x^2-y^2\right)-\left(y+z\right)\left(x^2-y^2\right)-\left(y+z\right)\left(z^2-x^2\right)+\left(z+x\right)\left(z^2-x^2\right)\)
\(=\left(x^2-y^2\right)\left(x+y-y-z\right)-\left(z^2-x^2\right).\left(y+z-z-x\right)\)
\(=\left(x^2-y^2\right).\left(x-z\right)-\left(z^2-x^2\right).\left(y-x\right)\)
\(=\left(x-y\right)\left(x+y\right)\left(x-z\right)+\left(z-x\right)\left(z+x\right)\left(x-y\right)\)
\(=\left(x-y\right).\left[\left(x+y\right)\left(x-z\right)+\left(z-x\right).\left(x+z\right)\right]\)
\(=\left(x-y\right)\left(x^2-zx+xy-yz+zx+z^2-x^2-xz\right)\)
\(=\left(x-y\right)\left(z^2-zx+xy-yz\right)\)
\(=\left(x-y\right)\left[z.\left(z-x\right)-y.\left(z-x\right)\right]\)
\(=\left(x-y\right)\left(z-y\right)\left(z-x\right)\)
\(=\left(x-y\right)\left(y-z\right)\left(x-z\right)\)
b)x(y+z)2+y(z+x)2+z(x+y)2-4xyz
=[x(y+z)2-2xyz]+[y(z+x)2-2xyz]+z(x+y)2
=x(y2+2yz+z2-2yz)+y(x2+z2+2xz-2xz)+z(x+y)2
=x(y2+z2)+y(x2+z2)+z(x+y)2
=xy2+xz2+x2y+yz2+(xz+yz)(x+y)
=xy(x+y)+z2(x+y)+(xz+yz)(x+y)
=(x+y)(xy+z2+xz+yz)
=(x+y)[x(y+z)+z(y+z)]
=(x+y)(y+z)(x+z)
a)x(y2-z2)+y(z2-x2)+z(x2-y2)
=x(y-z)(y+z)+yz2-x2y+x2z-y2z
=(y-z)(xy+xz)-x2(y-z)-yz(y-z)
=(y-z)(xy+xz-x2-yz)
=(y-z)[x(y-x)-z(y-x)]
=(y-z)(y-x)(x-z)