Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(a+b\right)^3-\left(a-b\right)^3\)
\(=a^3+3a^2b+3ab^2+b^3-\left(a^3-3a^2b+3ab^2-b^3\right)\)
\(=a^3+3a^2b+3ab^2+b^3-a^3+3a^2b-3ab^2+b^3\)
\(=6a^2b+2b^3\)
\(=2b\left(3a^2+b^2\right)\)
a/\(\left(a+b\right)^3-\left(a-b\right)^3\)
\(=\left(a^3+3a^2b+3ab^2+b^3\right)-\left(a^3-3a^2b+3ab^2-b^3\right)\)\(=a^3+3a^2b+3ab^2+b^3-a^3+3a^2b-3ab^2+b^2\)
\(=6ab^2+2b^3\)(rút gọn hết)
b/\(x^3+y^3+z^3-3xyz\)
\(=\left(x+y\right)^3-3xy\left(x-y\right)+z^3-3xyz\)
\(=\left[\left(x+y\right)^3+z^3\right]-3xy\left(x+y+z\right)\)
\(=\left(x+y+z\right)^3-3z\left(x+y\right)\left(x+y+z\right)-3xy\left(x-y-z\right)\)
\(=\left(x+y+z\right)\left[\left(x+y+z\right)^2-3z\left(x+y\right)-3xy\right]\)
\(=\left(x+y+z\right)\left(x^2+y^2+z^2+2xy-2xz+2xz+2xy-3xz-3yz-3xy\right).\)
\(=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-xz-yz\right)\)
Hok tốt
a) \(xy+y^2-x-y=y\left(x+y\right)-\left(x+y\right)=\left(x+y\right)\left(y-1\right)\)
b) \(25-x^2+4xy-4y^2=25-\left(x-2y\right)^2=\left(5-x+2y\right)\left(5+x-2y\right)\)
c) \(x^2-4x+3=x^2-x-3x+3=x\left(x-1\right)-3\left(x-1\right)=\left(x-1\right)\left(x-3\right)\)
d) \(y^2\left(x-1\right)-7y^3+7xy^3\)
\(=y^2\left(x-1-7y+7xy\right)\)
\(=y^2\left[\left(x-1\right)-7y\left(1-x\right)\right]=y^2\left(x-1\right)\left(1+7y\right)\)
a)
\(xy+y^2-x-y\\ =\left(xy-x\right)+\left(y^2-y\right)\\ =x\left(y-1\right)+y\left(y-1\right)\\ =\left(y-1\right)\left(x+y\right)\)
a: \(x^3-2x+4\)
\(=x^3+2x^2-2x^2-4x+2x+4\)
\(=\left(x+2\right)\left(x^2-2x+2\right)\)
b: \(x^3-4x^2+12x-27\)
\(=\left(x-3\right)\left(x^2+3x+9\right)-4x\left(x-3\right)\)
\(=\left(x-3\right)\left(x^2-x+9\right)\)
c: \(x^3+2x^2+2x+1\)
\(=\left(x+1\right)\left(x^2-x+1\right)+2x\left(x+1\right)\)
\(=\left(x+1\right)\left(x^2+x+1\right)\)
bài 1: a) \(x^2-3=x^2-\left(\sqrt{3}\right)^2=\left(x+\sqrt{3}\right)\left(x-\sqrt{3}\right)\)
b) \(\left(a+b\right)^2-\left(a+b\right)^2=\left(a+b+a+b\right)\left(a+b-a-b\right)=2a+2b=2\left(a+b\right)\)
c) \(x^3-27b^3=\left(x-3b\right)\left(x^2+3xb+b^2\right)\)
a) = a3+b3+c3 +3a2b +3ab2 -3ab(a+b) - 3abc
= (a+b)3+c3-3ab(a+b)-3abc (áp dụng A3+B3 ta có)
=(a+b+c) ( (a+b)2 - (a+b)c +c2) - 3ab(a+b+c)
=(a+b+c) ( (a+b)2 - (a+b)c +c2 - 3ab) (nhân tử chung là a+b+c)
=(a+b+c) ( a2+2ab+b2- ac-bc +c2 -3ab)
=(a+b+c) (a2+b2+c2-ab-ac-bc)
Phần b tương tự
Bài 1:
\(1,Sửa:x^3-2x^2+x=x\left(x^2-2x+1\right)=x\left(x-1\right)^2\\ 2,=6\left(x^2+2xy+y^2\right)=6\left(x+y\right)^2\\ 3,=2y\left(y^2+4y+4\right)=2y\left(y+2\right)^2\\ 4,=5\left(x^2-2xy+y^2\right)=5\left(x-y\right)^2\)
Bài 2:
\(1,=x\left(x^2-64\right)=x\left(x-8\right)\left(x+8\right)\\ 2,=2y\left(4x^2-9\right)=2y\left(2x-3\right)\left(2x+3\right)\\ 3,=3\left(x^3-1\right)=3\left(x-1\right)\left(x^2+x+1\right)\)
Bài 3:
\(a,=5\left(x^2+2x+1-y^2\right)=5\left[\left(x+1\right)^2-y^2\right]=5\left(x-y+1\right)\left(x+y+1\right)\\ b,=3x\left(x^2-2x+1-4y^2\right)=3x\left[\left(x-1\right)^2-4y^2\right]\\ =3x\left(x-2y-1\right)\left(x+2y-1\right)\\ c,=ab\left(a-b\right)\left(a+b\right)+\left(a+b\right)^2\\ =\left(a+b\right)\left(a^2b-ab^2+a+b\right)\\ d,=2x\left(x^2-y^2-4x+4\right)=2x\left[\left(x-2\right)^2-y^2\right]\\ =2x\left(x-y-2\right)\left(x+y-2\right)\)
a,(4x+1)3-(x-2)3
=(4x+1-x+2). \(\left[\left(4x+1\right)^2+\left(4x+1\right)\left(x-2\right)+\left(x-2\right)^2\right]\)
=(3x+3).(16x2+8x+1+4x2-8x+x-2+x2-4x+4)
=3(x+1).(21x2-3x+3)=3(x+1).3(7x2-x+1)
=9.(x+1)(7x2-x+1)
đề câu 2 bạn ghi sai rồi
x3+y3+z3-3xyz=x3+3x2y+3xy2+y3-3xyz-3x2y-3xy2+z3
=(x+y)3+z3-3xy(x+y+z)
=(x+y+z). ((x+y)2-(x+y)z+z2)-3xy(x+y+z)
=(x+y+z)(x2+2xy+y2-xz-yz+z2)-3xy(x+y+z)
=(x+y+z)(x2+y2+z2-xz-yz+2xy-3xy)
=(x+y+z)(x2+y2+z2-xz-yz- xy)