K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 12 2018

1) \(A=\frac{2018x^2-2.2018x+2018^2}{2018x^2}=\frac{\left(x-2018\right)^2+2017x^2}{2018x^2}=\frac{\left(x-2018\right)^2}{2018x^2}+\frac{2017}{2018}\)

vì \(\frac{\left(x-2018\right)^2}{2018x^2}\ge0\Rightarrow\frac{\left(x-2018\right)^2}{2018x^2}+\frac{2017}{2018}\ge\frac{2017}{2018}\)

dấu = xảy ra khi x-2018=0

=> x=2018

Vậy Min A=\(\frac{2017}{2017}\)khi x=2018

2) \(B=\frac{3x^2+9x+17}{3x^2+9x+7}=\frac{3x^2+9x+7+10}{3x^2+9x+7}=1+\frac{10}{3x^2+9x+7}=1+\frac{10}{3.x^2+9x+7}\)

\(=1+\frac{10}{3.\left(x^2+9x\right)+7}=1+\frac{10}{3.\left[x^2+\frac{2.x.3}{2}+\left(\frac{3}{2}\right)^2\right]-\frac{9}{4}+7}=1+\frac{10}{3.\left(x+\frac{9}{2}\right)^2+\frac{1}{4}}\)

để B lớn nhất => \(3.\left(x+\frac{3}{2}\right)^2+\frac{1}{4}\)nhỏ nhất

mà \(3.\left(x+\frac{3}{2}\right)^2+\frac{1}{4}\ge\frac{1}{4}\)vì \(3.\left(x+\frac{3}{2}\right)^2\ge0\)

dấu = xảy ra khi \(x+\frac{3}{2}=0\)

=> x=\(-\frac{3}{2}\)

Vậy maxB=\(41\)khi x=\(-\frac{3}{2}\)

3) \(M=\frac{3x^2+14}{x^2+4}=\frac{3.\left(x^2+4\right)+2}{x^2+4}=3+\frac{2}{x^2+4}\)

để M lớn nhất => x2+4 nhỏ nhất

mà \(x^2+4\ge4\)(vì x2 lớn hơn hoặc bằng 0)

dấu = xảy ra khi x=0

=> x=0

Vậy Max M\(=\frac{7}{2}\)khi x=0

ps: bài này khá dài, sai sót bỏ qua =))

2 tháng 12 2018

ê viết lộn dòng này :v

\(MinA=\frac{2017}{2018}\)nha 

21 tháng 1 2018

super easy . tập làm đi cho não có nếp nhăn Giang ơi  :)

21 tháng 1 2018

Mik làm bài 3 nha

Để \(\frac{2}{x^2-6x+17}\)đạt GTLN thì

\(x^2-6x+17\)đạt GTNN

Mà \(x^2-6x\ge0\)Do 6x mang dấu trừ

Suy ra \(x^2-6x+17\ge17\)

Suy ra \(x^2-6x+17\)đạt GTNN khi

\(x^2-6x+17=17\)

\(\Leftrightarrow x^2-6x=0\)

Dấu ''='' xảy ra khi:

\(\hept{\begin{cases}x=0\\x=6\end{cases}}\)

Vậy \(\frac{2}{x^2-6x+17}\)đạt GTLN tại \(\hept{\begin{cases}x=0\\x=6\end{cases}}\)

Câu cuôi tương tự

29 tháng 7 2020

E = \(\frac{x^4+1}{\left(x^2+1\right)^2}\)

để E lớn nhất 

thì \(\left(x^2+1\right)^2\) phải nhỏ nhất

mà \(\left(x^2+1\right)^2\)> 0 và khác 0 ( vì là mẫu số )

=> \(\left(x^2+1\right)^2=1\)

=> \(x^2+1=1\)

=> \(x^2=0\)

=> x = 0

để E đạt giá trị lớn nhất thì x = 0

29 tháng 7 2020

\(E=\frac{x^4+1}{\left(x^2+1\right)^2}=\frac{x^4+1}{x^4+2x^2+1}\le\frac{x^4+1}{x^4+1}=1\\ \Rightarrow maxE=1\Leftrightarrow x=0\)

\(E=\frac{x^4+1}{\left(x^2+1\right)^2}=\frac{x^4+1}{x^4+2x^2+1}=1-\frac{2x^2}{x^4+2x^2+1}\\ \ge1-\frac{2x^2}{2x^2+2x^2}=\frac{1}{2}\\ \Rightarrow minE=\frac{1}{2}\Leftrightarrow x=1\)

8 tháng 4 2019

Áp dụng bđt Cauchy cho 2 số không âm :

\(x^4+y^2\ge2\sqrt{x^4y^2}=2x^2y=2xy\cdot x=x\)( vì \(xy=1\))

\(\Rightarrow\frac{x}{x^4+y^2}\le\frac{x}{x}=1\)

Hoan toàn tương tự : \(\frac{y}{x^2+y^4}\le\frac{y}{y}=1\)

Khi đó :

\(\frac{x}{x^4+y^2}+\frac{y}{x^2+y^4}\le1+1=2\)

Hay \(A\le2\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x^4=y^2\\x^2=y^4\\xy=1\end{cases}\Leftrightarrow\orbr{\begin{cases}x=y=1\\x=y=-1\end{cases}}}\)

8 tháng 4 2019

Thêm đk x,y>0

*Tìm giá trị lớn nhất:

\(A=\frac{x}{x^4+y^2}+\frac{y}{x^2+y^4}\le\frac{x}{2xy.x}+\frac{y}{2xy.y}=\frac{x}{2x}+\frac{y}{2y}=\frac{1}{2}+\frac{1}{2}=1\)

Dấu "=' xảy ra khi x = y = 1

P/s: Bài này hình như không có Min thì phải.:>

12 tháng 3 2018

A + 1 = x^2+1+6x+8/x^2+1

         = x^2+6x+9/x^2+1

         = (x+3)^2/x^2+1 >= 0

=> A >= -1

Dấu "=" <=> x+3=0 <=> x=-3

Vậy ............

Tk mk nha

14 tháng 2 2019

Câu hỏi của Nguyễn Kim Chi - Toán lớp 8 - Học toán với OnlineMath

14 tháng 2 2019

\(x^2-x+1=x^2-2\cdot x\cdot\frac{1}{2}+\frac{1}{4}+\frac{3}{4}>0.\)

tương tự chứng minh x^2+x+1>0

\(-2\left(x^2+2x+1\right)\le0\Rightarrow-\frac{2\left(x^2+2x+1\right)}{x^2+x+1}\le0\)

\(\Rightarrow\frac{-2x^2-4x-x}{x^2+x+1}\le0\Rightarrow\frac{x^2-x+1-3x^2-3x-3}{x^2+x+1}\le0\Rightarrow\frac{x^2-x+1}{x^2+x+1}-3\le0\Rightarrow D\le3.\)

\(2\left(x^2-2x+1\right)\le0;3\left(x^2+x+1\right)>0\)

\(\frac{2\left(x^2-2x+1\right)}{3\left(x^2+x+1\right)}\ge0\Rightarrow\frac{2x^2-4x+2}{3\left(x^2+x+1\right)}=\frac{3\left(x^2-x+1\right)-x^2-x-1}{3\left(x^2+x+1\right)}=d-\frac{1}{3\Rightarrow}d\ge\frac{1}{3}\)

=> GTNN, GTLN

DM
30 tháng 1 2018

Kết luận:   GTNN của P là 3/4; P không có GTLN.

Giải: P là một giá trị của hàm số đã cho khi và chỉ khi tồn tại x để   \(P=\frac{x^2+x+1}{x^2+2x+1}\) (1), tức là phương trình (1) ẩn x phải có nghiệm.

Ta có  \(\left(1\right)\Leftrightarrow P\left(x^2+2x+1\right)=x^2+x+1\)\(\Leftrightarrow\left(P-1\right)x^2+\left(2P-1\right)x+\left(P-1\right)=0\).

Nếu \(P=1\) thì (1) trở thành  \(x=0\), phương trình có nghiệm x = 0.

Nếu \(P\ne1\) thì phương trình sẽ có nghiệm khi và chỉ khi  

                                  \(\Delta=\left(2P-1\right)^2-4\left(P-1\right)^2=4P-3\ge0\Leftrightarrow P\ge\frac{3}{4}\)

Vậy tập giá trị của P là   \(\frac{3}{4}\le P< +\infty\). Do đó P không có GTLN và P có GTNN = \(\frac{3}{4}\)

26 tháng 7 2017

\(P=\frac{x^2+x+1}{x^2+2x+1}=\frac{\frac{3}{4}\left(x^2+2x+1\right)+\frac{\left(x^2-2x+1\right)}{4}}{x^2+2x+1}\)

\(=\frac{3}{4}+\frac{\left(x-1\right)^2}{4\left(x+1\right)^2}\ge\frac{3}{4}\)

Dấu = xảy ra  khi \(x=1\)