K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: ĐKXĐ: x>0; x<>4

\(P=\left(2-\sqrt{x}+2\right)\cdot\dfrac{1}{\sqrt{x}-2}=\dfrac{4-\sqrt{x}}{\sqrt{x}-2}\)

b: P=2/3

=>(4-căn x)/(căn x-2)=2/3

=>2căn x-4=12-3căn x

=>5căn x=16

=>x=256/25

c: Khi x=8-2căn 7 thì \(P=\dfrac{4-\sqrt{7}+1}{\sqrt{7}-1-2}=\dfrac{5-\sqrt{7}}{\sqrt{7}-3}=-4-\sqrt{7}\)

17 tháng 10 2018

giúp mình câu 1 trước đi nè

haha

19 tháng 10 2018

Câu 2:

a, ĐKXĐ: x\(\ge\)0; x\(\ne\)\(\pm\)1

B=

\(\left(\dfrac{\sqrt{x}-1}{\sqrt{x}+1}-\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\right):\dfrac{\sqrt{x}}{\sqrt{x}+1}\\ =\dfrac{\left(\sqrt{x}-1\right)^2-\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}:\dfrac{\sqrt{x}}{\sqrt{x}+1}\\ =\dfrac{-2.2\sqrt{x}}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}:\dfrac{\sqrt{x}}{\sqrt{x}+1}\\ =\dfrac{-4\sqrt{x}}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}:\dfrac{\sqrt{x}}{\sqrt{x}+1}\\ =\dfrac{4\sqrt{x}}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}.\dfrac{\sqrt{x}+1}{\sqrt{x}}\\ =-\dfrac{4}{\sqrt{x}-1}\)

11 tháng 9 2017

1. b) \(\left(x\sqrt{\dfrac{6}{x}}+\sqrt{\dfrac{2x}{3}}+\sqrt{6x}\right):\sqrt{6x}\)

=\(\left(x\sqrt{\dfrac{6x}{x^2}}+\sqrt{\dfrac{6x}{9}}+\sqrt{6x}\right):\sqrt{6x}\)

=\(\left(\sqrt{6x}+\dfrac{1}{3}\sqrt{6x}+\sqrt{6x}\right):\sqrt{6x}\)

=\(\dfrac{7}{3}\sqrt{6x}:\sqrt{6x}=\dfrac{7}{3}\)

2.

P=\(\dfrac{\sqrt{x}-3}{\sqrt{x}-2}-\dfrac{2\sqrt{x}-1}{\sqrt{x}-1}+\dfrac{x-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}\)(bn có ghi sai đề ko)

a) ĐKXĐ : \(x\ge1,x\ge2,x\ge0\)

b) P=\(\dfrac{\left(\sqrt{x}-3\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}-\dfrac{\left(2\sqrt{x}-1\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}+\dfrac{x-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}\)

=\(\dfrac{x-3\sqrt{x}-\sqrt{x}+3-2x+\sqrt{x}+4\sqrt{x}-2+x-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}\)

=\(\dfrac{\sqrt{x}-1}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}=\dfrac{1}{\sqrt{x}-2}\)

c) thay x= \(4-2\sqrt{3}\)vào P ta có :

\(\dfrac{1}{\sqrt{4-2\sqrt{3}}-2}=\dfrac{1}{\sqrt{3}-1-2}=\dfrac{1}{\sqrt{3}-3}\)

13 tháng 9 2017

@Lê Đình Thái mk k ghi sai dè nha bn

18 tháng 10 2017

phần A chép đúng đầu bài hả bn

19 tháng 10 2017

uk

19 tháng 8 2017

A=\(\dfrac{\sqrt{x}}{\sqrt{x}+3}+\dfrac{2\sqrt{x}}{\sqrt{x}-3}-\dfrac{3x+9}{x-9}\)

ĐKXĐ :x\(\ne\)9,x\(\ge\)0

<=> \(\dfrac{\sqrt{x}\left(\sqrt{x}-3\right)+2\sqrt{x}\left(\sqrt{x}+3\right)-3x-9}{x-9}\)

=\(\dfrac{x-3\sqrt{x}+2x+6\sqrt{x}-3x-9}{x-9}\)

=\(\dfrac{3\sqrt{x}-9}{x-9}\)=\(\dfrac{3\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}=\dfrac{3}{\sqrt{x}+3}\)

ta có : A=1/3 => \(\dfrac{3}{\sqrt{x}+3}=\dfrac{1}{3}=>\sqrt{x}+3=9\)

=> x=36

vậy giá trị của x=36 khi A=1/3

B=\(\left(\dfrac{1}{\sqrt{x}-1}-\dfrac{\sqrt{x}}{x-1}\right):\dfrac{1}{\sqrt{x}+1}\)

ĐKXĐ: x\(\ne\)1 ,x\(\ge\)0

<=> \(\dfrac{\sqrt{x}+1-\sqrt{x}}{x-1}:\dfrac{1}{\sqrt{x}+1}\)

=\(\dfrac{1}{x-1}:\dfrac{1}{\sqrt{x}+1}=\dfrac{\sqrt{x}+1}{x-1}=\dfrac{1}{\sqrt{x}-1}\)

ta có : B<0 =>\(\dfrac{1}{\sqrt{x}-1}< 0\)

=> 1< \(\sqrt{x}-1\)=> \(\sqrt{x}\)>2=>x>4

vậy x>4 khi B<0

18 tháng 8 2017

\(ĐKXĐ:x\ne9\Rightarrow A=\dfrac{\sqrt{x}}{\sqrt{x}+3}+\dfrac{2\sqrt{x}}{\sqrt{x}-3}-\dfrac{3x+9}{x-9} =\dfrac{\sqrt{x}\left(\sqrt{x}-3\right)}{x-9}+\dfrac{2\sqrt{x}\left(\sqrt{x}+3\right)}{x-9}+\dfrac{3x+9}{x-9}=\dfrac{x-3\sqrt{x}+2x+6\sqrt{x}-3x-9}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}=\dfrac{3\sqrt{x}-9}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}=\dfrac{3\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}=\dfrac{3}{\sqrt{x}+3}\)

Bài 1: 

a: \(A=\dfrac{\sqrt{x}+2}{2\left(\sqrt{x}-2\right)}+\dfrac{\sqrt{x}-2}{2\left(\sqrt{x}+2\right)}\)

\(=\dfrac{x+4\sqrt{x}+4+x-4\sqrt{x}+4}{2\left(x-4\right)}\)

\(=\dfrac{2x+8}{2\left(x-4\right)}=\dfrac{x+4}{x-4}\)

b: Để A=8 thì x+4=8(x-4)

=>x+4=8x-32

=>-7x=-36

hay x=36/7(nhận)

23 tháng 7 2018

a) ĐKXĐ: : phải là 1 biểu thức có nghĩa. b) ko có x nên ko phải tìm

23 tháng 7 2018

Ô xin lỗi bạn, do lúc trước mình ko thấy đề nên bấm bậy, xin lỗi nhiều

27 tháng 11 2018

\(Q=\frac{\sqrt{x}\cdot\left(\sqrt{x}-1\right)\cdot\left(x+\sqrt{x}+1\right)}{x+\sqrt{x}+1}-\frac{\sqrt{x}\cdot\left(2\sqrt{x}+1\right)}{\sqrt{x}}+\frac{2\left(\sqrt{x}-1\right)\cdot\left(\sqrt{x}-1\right)}{\sqrt{x}-1}\)

\(Q=x-\sqrt{x}-2\sqrt{x}-1+2\sqrt{x}+2\)

\(Q=x+1\)

Không thể tìm được GTLN hay GTNN của Q.

b)

   \(\frac{3x+3}{\sqrt{x}}=3\sqrt{x}+\frac{3}{\sqrt{x}}\)

Để \(\frac{3Q}{\sqrt{x}}\) nguyên thì \(\frac{3}{\sqrt{x}}\)nguyên hay \(\sqrt{x}\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)

Vì \(\sqrt{x}\)dương nên \(\sqrt{x}\in\left\{1;3\right\}\)

Vậy x=1, x=9 là các giá trị cần tìm