Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải:
a) \(\dfrac{\left(x+\dfrac{3}{4}\right).\dfrac{7}{2}-\dfrac{1}{6}}{-\left(\dfrac{4}{5}+\dfrac{1}{3}\right).\dfrac{1}{2}+1}=2\dfrac{33}{52}\)
\(\Leftrightarrow\dfrac{\left(x+\dfrac{3}{4}\right).\dfrac{7}{2}-\dfrac{1}{6}}{-\dfrac{17}{15}.\dfrac{1}{2}+1}=\dfrac{137}{52}\)
\(\Leftrightarrow\dfrac{\left(x+\dfrac{3}{4}\right).\dfrac{7}{2}-\dfrac{1}{6}}{\dfrac{13}{30}}=\dfrac{137}{52}\)
\(\Leftrightarrow\left(x+\dfrac{3}{4}\right).\dfrac{7}{2}-\dfrac{1}{6}=\dfrac{137}{52}.\dfrac{13}{30}\)
\(\Leftrightarrow\left(x+\dfrac{3}{4}\right).\dfrac{7}{2}-\dfrac{1}{6}=\dfrac{137}{120}\)
\(\Leftrightarrow\left(x+\dfrac{3}{4}\right).\dfrac{7}{2}=\dfrac{137}{120}+\dfrac{1}{6}\)
\(\Leftrightarrow\left(x+\dfrac{3}{4}\right).\dfrac{7}{2}=\dfrac{157}{120}\)
\(\Leftrightarrow x+\dfrac{3}{4}=\dfrac{157}{120}:\dfrac{7}{2}\)
\(\Leftrightarrow x+\dfrac{3}{4}=\dfrac{157}{420}\)
\(\Leftrightarrow x=\dfrac{157}{420}-\dfrac{3}{4}\)
\(\Leftrightarrow x=-\dfrac{79}{210}\)
Vậy \(x=-\dfrac{79}{210}\).
b) \(\dfrac{\left(5-\dfrac{2}{7}\right).\dfrac{7}{9}.\dfrac{3}{5}}{\left(3x-\dfrac{5}{6}\right):\dfrac{1}{7}}=5\dfrac{5}{21}\)
\(\Leftrightarrow\dfrac{\left(5-\dfrac{2}{7}\right).\dfrac{7}{15}}{\left(3x-\dfrac{5}{6}\right):\dfrac{1}{7}}=\dfrac{110}{21}\)
\(\Leftrightarrow\dfrac{\dfrac{33}{7}.\dfrac{7}{15}}{\left(3x-\dfrac{5}{6}\right):\dfrac{1}{7}}=\dfrac{110}{21}\)
\(\Leftrightarrow\dfrac{\dfrac{11}{5}}{\left(3x-\dfrac{5}{6}\right):\dfrac{1}{7}}=\dfrac{110}{21}\)
\(\Leftrightarrow\left(3x-\dfrac{5}{6}\right):\dfrac{1}{7}=\dfrac{11}{5}:\dfrac{110}{21}\)
\(\Leftrightarrow\left(3x-\dfrac{5}{6}\right):\dfrac{1}{7}=\dfrac{21}{50}\)
\(\Leftrightarrow3x-\dfrac{5}{6}=\dfrac{21}{50}.\dfrac{1}{7}\)
\(\Leftrightarrow3x-\dfrac{5}{6}=\dfrac{3}{50}\)
\(\Leftrightarrow3x=\dfrac{3}{50}+\dfrac{5}{6}\)
\(\Leftrightarrow3x=\dfrac{67}{75}\)
\(\Leftrightarrow x=\dfrac{67}{75}:3\)
\(\Leftrightarrow x=\dfrac{67}{225}\)
Vậy \(x=\dfrac{67}{225}\).
Chúc bạn học tốt!
CÁC BẠN GIÚP MK NHA!!!
NGÀY MAI MK NỘP BÀI RỒI
AI TRẢ LỜI NHANH NHẤT
CHÍNH XÁC NHẤT VÀ RÕ RÀNG
THÌ MK TICK CHO NHA!!!
NHỚ TRẢ LỜI NHANH GIÙM MK NHA
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{a+b-c}{3c}=\dfrac{b+c-a}{3a}=\dfrac{c+a-b}{3b}=\dfrac{a+b-c+b+c-a+c+a-b}{3a+3b+3c}=\dfrac{a+b+c+\left(a-a\right)+\left(b-b\right)+\left(c-c\right)}{3a+3b+3c}=\dfrac{a+b+c}{3\left(a+b+c\right)}=\dfrac{1}{3}\)
Khi đó:
\(\left\{{}\begin{matrix}\dfrac{a+b-c}{3c}=\dfrac{1}{3}\\\dfrac{b+c-a}{3a}=\dfrac{1}{3}\\\dfrac{c+a-b}{3b}=\dfrac{1}{3}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3a+3b-3c=3c\\3b+3c-3a=3a\\3c+3a-3b=3b\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3a+3b=6c\\3b+3c=6a\\3c+3a=6b\end{matrix}\right.\)Thay vào \(P\)
\(P=\left(1+\dfrac{b}{a}\right)\left(1+\dfrac{a}{c}\right)\left(1+\dfrac{c}{b}\right)=\left(\dfrac{a+b}{a}\right)\left(\dfrac{c+a}{c}\right)\left(\dfrac{b+c}{b}\right)\)
\(27P=3\left(\dfrac{a+b}{a}\right).3\left(\dfrac{c+a}{c}\right).3\left(\dfrac{b+c}{b}\right)\)
\(27P=\left(\dfrac{3a+3b}{a}\right)\left(\dfrac{3c+3a}{c}\right)\left(\dfrac{3b+3c}{b}\right)\)
\(27P=\)\(\dfrac{6c}{a}.\dfrac{6b}{c}.\dfrac{6a}{b}=\dfrac{216abc}{abc}=216\Leftrightarrow P=\dfrac{216}{27}=8\)
a) A=[27(14−13)]:[27(13−25)]=(14−13):(13−25)=114A=[27(14−13)]:[27(13−25)]=(14−13):(13−25)=114.
b) B=34(15−27−13+27)15(27+13)−13(27+13)=34(15−13)(15−13)(27+13)=11152B=34(15−27−13+27)15(27+13)−13(27+13)=34(15−13)(15−13)(27+13)=11152.
a) \mathrm{A}=\left[\dfrac{2}{7}\left(\dfrac{1}{4}-\dfrac{1}{3}\right)\right]:\left[\dfrac{2}{7}\left(\dfrac{1}{3}-\dfrac{2}{5}\right)\right]=\left(\dfrac{1}{4}-\dfrac{1}{3}\right):\left(\dfrac{1}{3}-\dfrac{2}{5}\right)=1 \dfrac{1}{4}A=[72(41−31)]:[72(31−52)]=(41−31):(31−52)=141.
b) \mathrm{B}=\dfrac{\dfrac{3}{4}\left(\dfrac{1}{5}-\dfrac{2}{7}-\dfrac{1}{3}+\dfrac{2}{7}\right)}{\dfrac{1}{5}\left(\dfrac{2}{7}+\dfrac{1}{3}\right)-\dfrac{1}{3}\left(\dfrac{2}{7}+\dfrac{1}{3}\right)}=\dfrac{\dfrac{3}{4}\left(\dfrac{1}{5}-\dfrac{1}{3}\right)}{\left(\dfrac{1}{5}-\dfrac{1}{3}\right)\left(\dfrac{2}{7}+\dfrac{1}{3}\right)}=1 \dfrac{11}{52}B=51(72+31)−31(72+31)43(51−72−31+72)=(51−31)(72+31)43(51−31)=15211
a)x=1;2;-2(bạn nên tự giải)
b)=>\(\dfrac{1\cdot2\cdot3\cdot4\cdot...\cdot30\cdot31}{4\cdot6\cdot8\cdot10\cdot...\cdot62\cdot64}\)=2x
=>\(\dfrac{2\cdot3\cdot4\cdot5\cdot...\cdot30\cdot31}{60\left(2\cdot3\cdot4\cdot5\cdot...\cdot30\cdot31\right)\cdot64}=2x\)
=>\(\dfrac{1}{60\cdot64}=2x\)=> 1/3840 =2x
=>x = 1/7680
c)=>4x - 2x = 6x - 3x
=>2x (2x-1)= 3x(2x-1)
=> 2x = 3x
=>x = 0
Hoàng Ngọc Anh bài này nè bn giúp mk nha!!! ngày mai mk phải nộp bài rùi =.=
a) \(\Rightarrow\dfrac{\dfrac{7}{2}x+\dfrac{59}{24}}{\dfrac{13}{30}}=\dfrac{137}{52}\)
\(\Rightarrow\left(\dfrac{7}{2}x+\dfrac{59}{24}\right).52=\dfrac{13}{30}.137\)
\(\Rightarrow182x+\dfrac{767}{6}=\dfrac{1781}{30}\)
\(\Rightarrow x=\dfrac{-79}{210}\)
b) Tương tự câu a)
Bài 1:
a: \(\Leftrightarrow2-3\sqrt{x}+5\sqrt{x}=8\)
=>2 căn x=6
=>căn x=3
=>x=9
b: \(\Leftrightarrow\dfrac{1}{\sqrt{x}}\cdot\left(\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{6}\right)=\dfrac{2}{3}\)
\(\Leftrightarrow\dfrac{1}{\sqrt{x}}=\dfrac{2}{3}:\dfrac{2}{3}=1\)
=>x=1
1,
\(A=\left(\dfrac{1}{2}-1\right)\cdot\left(\dfrac{1}{3}-1\right)\cdot...\cdot\left(\dfrac{1}{2018}-1\right)\\ A=\left(-\dfrac{1}{2}\right)\cdot\left(-\dfrac{2}{3}\right)\cdot...\cdot\left(-\dfrac{2017}{2018}\right)\\ =-\left(\dfrac{1}{2}\cdot\dfrac{2}{3}\cdot...\cdot\dfrac{2017}{2018}\right)\\ =-\dfrac{1}{2018}\)
Câu 2
(a+3)(b-4)-(a-3)(b+4)=0
=>ab-4a+3b-12-ab-4a+3b+12=0
=>-8a=-6b
=>a/b=3/4
=>a/3=b/4
Làm lại cho you đây -_- vừa nãy bấm mt nhầm,đời t nhọ vãi
1)\(P=1+\dfrac{1}{2}\left(1+2\right)+\dfrac{1}{3}\left(1+2+3\right)+\dfrac{1}{4}\left(1+2+3+4\right)+...+\dfrac{1}{16}\left(1+2+3+....+16\right)\)
\(P=1+\dfrac{1+2}{2}+\dfrac{1+2+3}{3}+\dfrac{1+2+3+4}{4}+...+\dfrac{1+2+3+...+16}{16}\)
Xét thừa số tổng quát: \(\dfrac{1+2+3+...+t}{t}=\dfrac{\left[\left(t-1\right):1+1\right]:2.\left(t+1\right)}{t}=\dfrac{\dfrac{t}{2}\left(t+1\right)}{t}=\dfrac{\dfrac{t^2}{2}+\dfrac{t}{2}}{t}=\dfrac{t\left(\dfrac{t}{2}+\dfrac{1}{2}\right)}{t}=\dfrac{t}{2}+\dfrac{1}{2}\)
Như vậy: \(P=1+\left(\dfrac{2}{2}+\dfrac{1}{2}\right)+\left(\dfrac{3}{2}+\dfrac{1}{2}\right)+\left(\dfrac{4}{2}+\dfrac{1}{2}\right)+...+\left(\dfrac{16}{2}+\dfrac{1}{2}\right)\)
\(P=1+\dfrac{3}{2}+\dfrac{4}{2}+\dfrac{5}{2}+....+\dfrac{17}{2}\)
\(P=\dfrac{2+3+4+5+...+17}{2}\)
\(P=\dfrac{152}{2}=76\)
2) \(\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}=\dfrac{1}{3}\)
\(\Rightarrow2016\left(\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}\right)=\dfrac{2016}{3}\)
\(\Rightarrow\dfrac{2016}{a+b}+\dfrac{2016}{b+c}+\dfrac{2016}{c+a}=\dfrac{2016}{3}\)
\(\Rightarrow\dfrac{a+b+c}{a+b}+\dfrac{a+b+c}{b+c}+\dfrac{a+b+c}{c+a}=\dfrac{2016}{3}\)
\(\Rightarrow\dfrac{a+b}{a+b}+\dfrac{c}{a+b}+\dfrac{b+c}{b+c}+\dfrac{a}{b+c}+\dfrac{c+a}{c+a}+\dfrac{b}{c+a}=\dfrac{2016}{3}\)
\(\Rightarrow1+\dfrac{c}{a+b}+1+\dfrac{a}{b+c}+1+\dfrac{b}{c+a}=\dfrac{2016}{3}\)
\(\Rightarrow\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}=\dfrac{2016}{3}-1-1-1=\dfrac{2007}{3}\)