Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. Xét tam giác HCD cóHN=DN;HM=CM
=> MN là đường trung bình của tam giác HCD => MN//DC
=> DNMC là hình thang
b. Ta có MN là đường trung bình của tam giác HCD => MN=1/2CD
Mà AB=1/2CD => AB =MN
Do MN//CD và AB//CD => AB//MN
Xét tứ giác ABMN có AB//MN; AB=MN
=> ABMN là hình bình hành
c.Ta có MN//CD mà CD vg AD
=> MN vg AD
Xét tam giác ADM có DH và MN là 2 đường cao của tam giác
Mà chúng cắt nhau tại N nên N là trực tâm của tam giác ADM
=> AN là đường cao của tam giác ADM
=> AN vg DM
Do ABMN là hình bình hành nên AN//BM
=> BM vg DM => BMD =90*
ài 5 1/ Cho tam giác ABC nhọn có các đường cao AD,BE,CF cắt nhau tại h
a,tính tổng $\frac{\text{HD }}{AD}+\frac{\text{HE }}{BE}+\frac{\text{ }\text{HF }}{CF}$HDAD +HEBE +HFCF
b,CMR: BH.BE+CH.CF=BC2
c,CM: H cách đều 3 cạnh tam giác DEF
d,trên các đoạn HB,HC lấy các điểm M,N tùy y sao cho HM=CN . Chứng minh đường trung trức của đoạn thẳng MN luôn đi qua một điểm cố định
2/ Cho hình vuông ABCD.trên BC lấy các điểm E,qua A kẻ đường thẳng vuông góc với AE ,đường thẳng này cắt CD tại F.Gọi I là trung điểm của EF,AI cắt CD tại K .qua E kẻ đường thẳng song song với AB đường thẳng này cắt AI tại G.CM tứ giác EGFK là hình thoi
ai đó giúp mình với
Toán lớp 8
a) BD, CE là các đường trung tuyến của \(\Delta ABC\)
\(\Rightarrow\)DA = DC; EA =EB
\(\Rightarrow\)ED là đường trung bình của \(\Delta ABC\)
\(\Rightarrow\)ED // BC; ED = 1/2 BC
\(\Delta GBC\)có MG = MB; NG = NC
\(\Rightarrow\)MN là đường trung bình của \(\Delta GBC\)
\(\Rightarrow\)MN // BC; MN = 1/2 BC
suy ra: MN // ED; MN = ED
\(\Rightarrow\)tứ giác MNDE là hình bình hành
c) MN = ED = 1/2 BC
\(\Rightarrow\)MN + ED = \(\frac{BC}{2}\)+ \(\frac{BC}{2}\)= BC