Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = \(\frac{2}{3}+\frac{14}{15}+\frac{34}{35}+\frac{62}{63}+\frac{98}{99}\)
A = ( 1 - 1/3 ) + ( 1 - 1/15 ) + ( 1 - 1/35 ) + ( 1 - 1/63 ) + ( 1 - 1/99 )
A = ( 1 + 1 + 1 + 1 + 1 ) - ( 1/3 + 1/15 + 1/35 + 1/63 + 1/99 )
A = 5 - \(\left(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+\frac{1}{9.11}\right)\)
A = 5 - ( 1 - 1/3 + 1/3 - 1/5 + 1/5 - 1/7 + 1/7 - 1/9 + 1/9 - 1/11 )
A = 5 - ( 1 - 1/11 )
A = 5 - 10/11
A = 45/11
Dấu \(.\)là dấu nhân
\(A=\frac{2}{3}+\frac{14}{15}+\frac{34}{35}+\frac{62}{63}+\frac{98}{99}\)
\(\Rightarrow A=\left(1-\frac{1}{3}\right)+\left(1-\frac{1}{15}\right)+\left(1-\frac{1}{35}\right)+\left(1-\frac{1}{63}\right)+\left(1-\frac{1}{99}\right)\)
\(\Rightarrow A=\left(1+1+1+1+1\right)-\left(\frac{1}{3}+\frac{1}{15}+\frac{1}{35}+\frac{1}{63}+\frac{1}{99}\right)\)
\(\Rightarrow A=5-\left(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+\frac{1}{9.11}\right)\)
\(\Rightarrow A=5-\frac{1}{2}.\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}\right)\)
\(\Rightarrow A=5-\frac{1}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}\right)\)
\(\Rightarrow A=5-\frac{1}{2}.\left(1-\frac{1}{11}\right)\)
\(\Rightarrow A=5-\frac{1}{2}.\frac{10}{11}\)
\(\Rightarrow A=5-\frac{5}{11}\)
\(\Rightarrow A=\frac{55}{11}-\frac{5}{11}\)
\(\Rightarrow A=\frac{50}{11}\)
~ Ủng hộ nhé
+ \(\frac{1}{n\times\left(n+2\right)}=\frac{\left(n+2\right)-n}{n\times\left(n+2\right)}\)
\(=\frac{n+2}{n\times\left(n+2\right)}-\frac{n}{n\times\left(n+2\right)}=\frac{1}{n}-\frac{1}{n+2}\)
+ \(\frac{2}{3}+\frac{14}{15}+\frac{34}{35}+\frac{62}{63}+\frac{98}{99}\)
\(=1-\frac{1}{3}+1-\frac{1}{15}+1-\frac{1}{35}+1-\frac{1}{63}+1-\frac{1}{99}\)
\(=5-\left(\frac{1}{3}+\frac{1}{15}+\frac{1}{35}+\frac{1}{63}+\frac{1}{99}\right)\)
\(=5-\frac{1}{2}\times\left(\frac{2}{1\times3}+\frac{2}{3\times5}+\frac{2}{5\times7}+\frac{2}{7\times9}+\frac{2}{9\times11}\right)\)
\(=5-\frac{1}{2}\times\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{9}-\frac{1}{11}\right)\)
\(=5-\frac{1}{2}\times\left(1-\frac{1}{11}\right)\)
\(=5-\frac{1}{2}+\frac{1}{22}=\frac{50}{11}\)
\(\frac{4}{3}+\frac{16}{15}+\frac{36}{35}+\frac{64}{63}+\frac{100}{99}\\ =\frac{2.2}{1.3}+\frac{4.4}{3.5}+\frac{6.6}{5.7}+\frac{8.8}{7.9}+\frac{10.10}{9.11}\)
\(\frac{4}{3}+\frac{16}{15}+\frac{36}{35}+\frac{64}{65}+\frac{100}{99}\)
\(1+\frac{1}{3}+1+\frac{1}{15}+1+\frac{1}{35}+1+\frac{1}{65}+1+\frac{1}{99}\)
\(\left(1+1+1+1+1\right)+\left(\frac{1}{3}+\frac{1}{15}+\frac{1}{35}+\frac{1}{65}+\frac{1}{99}\right)\)
\(\frac{60}{11}\)
#)Giải :
\(200-18:\left(372:3x-1\right)-28=166\)
\(\Leftrightarrow200-18:\left(372:3x-1\right)=194\)
\(\Leftrightarrow18:\left(372:3x-1\right)=6\)
\(\Leftrightarrow372:3x-1=3\)
\(\Leftrightarrow3x-1=124\)
\(\Leftrightarrow3x=125\)
\(\Leftrightarrow x=\frac{125}{3}\)
200 - 18 : (372 : 3 . x - 1) - 28 = 166
=> 200 - 18 : (372 : 3.x - 1) = 166 + 28
=> 200 - 18 : (372 : 3.x) - 1) = 194
=> 18 : (372 : 3.x - 1) = 200 - 194
=> 18 : (372 : 3.x - 1) = 6
=> 372 : 3.x - 1 = 18 : 6
=> 372 : 3.x - 1 = 3
=> 372 : 3.x = 3 + 1
=> 372 : 3.x = 4
=> 3.x = 372 : 4
=> 3.x = 93
=> x = 93 : 3
=> x = 31
2/3 + 2/15 + 2/35 + 2/63 + 2/99
= 2/1×3 + 2/3×5 + 2/5×7 + 2/7×9 + 2/9×11
= 1 - 1/3 + 1/3 - 1/5 + 1/5 - 1/7 + 1/7 - 1/9 + 1/9 - 1/11
= 1 - 1/11
= 10/11
\(=\frac{2}{3}+\frac{2}{15}+\frac{2}{35}+\frac{2}{63}+\frac{2}{99}\)
\(=2.\left(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+\frac{1}{9.11}\right)\)
\(=2.\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+....+\frac{1}{9}-\frac{1}{11}\right)\)
\(=2.\left(\frac{1}{1}-\frac{1}{11}\right)\)
\(=\frac{20}{11}\)
Dấu chấm là dấu nhân
\(P=\frac{2}{3}+\frac{14}{15}+\frac{34}{35}+\frac{62}{63}+\frac{98}{99}\)
\(P=\left(1-\frac{1}{3}\right)+\left(1-\frac{1}{15}\right)+\left(1-\frac{1}{35}\right)+\left(1-\frac{1}{63}\right)+\left(1-\frac{1}{99}\right)\)
\(P=\left(1+1+1+1+1\right)-\left(\frac{1}{3}+\frac{1}{15}+\frac{1}{35}+\frac{1}{63}+\frac{1}{99}\right)\)
\(P=5-\left(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+\frac{1}{9.11}\right)\)
\(P=5-\frac{1}{2}.2.\left(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+\frac{1}{9.11}\right)\)
\(P=5-\frac{1}{2}.\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}\right)\)
\(P=5-\frac{1}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}\right)\)
\(P=5-\frac{1}{2}.\left(1-\frac{1}{11}\right)\)
\(P=5-\frac{1}{2}.\frac{10}{11}\)
\(P=5-\frac{5}{11}\)
\(P=\frac{55}{11}-\frac{5}{11}\)
\(P=\frac{50}{11}\)