Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chu vi của tam giác abc là
ab+bc+c=25 (1)
chu vi của tam giác acd là (2)
ac+cd+da=17 (3)
chu vi của tứ giác abcd là
ab+bc+cd+da=32
từ (1) và (2) ta có :
ab+bc+ac+ac+cd+da=25+27=52
=>(ab=bc=cd=da)+2ac=52 (4)
từ (1) và (4)
<=> 32+2ac=52
=>2ac =52 - 32 =20
=>ac=20:2=10
vậy ac = 10cm
thực ra đề gốc hỏi x+y có phải là số chính phương hay không, x,y,z thuộc N*, có bạn làm thế này:
\(\frac{1}{x}+\frac{1}{y}=\frac{1}{z}\Leftrightarrow z.\left(x+y\right)=xy\)
Giả sử x+y là số chính phương. Đặt x+y=k2
mà \(z.\left(x+y\right)=xy\)
\(\Leftrightarrow zk^2=xy\)
Vì x,y là số nguyên tố => 1 trong 2 số chia hết cho k2 vì x,y,z thuộc N*
Giả sử x=n.k2 (n thuộc N*)
mà \(zk^2=xy\)
\(\Leftrightarrow zk^2=n.k^2.y\Leftrightarrow z=n.y\Leftrightarrow\frac{z}{y}=n\), vì x,y là 2 số nguyên tố cùng nhau => n không thuộc N*(vô lí)
vậy x+y ko phải số chính phương
Bạn đó làm đã đúng chưa, nếu sai hãy sửa lại :v
Thử, đúng hay sai thì tùy, mình mới học sơ sơ dạng này thôi, nếu sai xin đừng bốc phốt...:v
Theo đề bài\(z\left(x+y\right)=xy\Leftrightarrow x+y=\frac{xy}{z}\) và (x;y;z) = 1
Giả sử x + y là số chính phương khi đó \(\frac{xy}{z}=k^2\left(k\inℕ^∗\right)\Leftrightarrow xy=k^2.z\)
Suy ra xy chia hết cho z. Mà x, y, z nguyên tố cùng nhau nên x và y đều không chia hết cho z.
\(\Rightarrow xy=z\). Khi đó \(\left(x;y;z\right)=1\Leftrightarrow\left(x;y\right)=\left(y;z\right)=1\Leftrightarrow\left(x;y\right)=\left(y;xy\right)=1\) (vô lí vì
\(\left(y;xy\right)=y\))
Vậy ko tồn tại x, y,z..
TL:
Vì nó cầm dao và đấm vào ngực nó (đười ươi hay làm thế).
HT~
@@@@@@
Vì nó cầm dao và đấm đấm vào ngực của nó.
Thói quen mà. gần giống king kong ớ bạn
HT
Trả lời : a.Có lợi vì nói dễ bị ngã chứ chưa ngã có nghĩa là lực ma sát nghỉ sinh ra ở đây giúp ta đứng vững và khi di chuyển sẽ ko bị ngã.
Trả lời : b.Giày đi mãi đế bị mòn vì ma sát của mặt đường với đế giày làm mòn đế. Ma sát trong trường hợp này là có hại.
mong bạn
a.Có lợi vì nói dễ bị ngã chứ chưa ngã có nghĩa là lực ma sát nghỉ sinh ra ở đây giúp ta đứng vững và khi di chuyển sẽ ko bị ngã.
b.Giày đi mãi đế bị mòn vì ma sát của mặt đường với đế giày làm mòn đế.Ma sát trong trường hợp này có hại.
\(P=a\left(2a-3\right)-2a\left(a+1\right)+5\)
\(=2a^2-3a-2a^2-2a+5\)
\(=\left(2a^2-2a^2\right)-\left(3a+2a\right)+5\)
\(=-5a+5=-5\left(a-1\right)⋮5\)
mk nghĩ là người đàn ông vì đàn bà thì hóa trang thành trai đâu có j lạ
nhưng người đàn ông mặc váy, đeo giày cao gót sẽ ko quen
7l-3l=4l chia 2 ra
nhan 2.5 lan len la ra
không bit
- Xét \(\Delta OAD\)có : EA = EO (gt) ; FO = FD (gt)
= > EF là đường trung bình của \(\Delta OAD\) => \(EF=\frac{1}{2}AD=\frac{1}{2}BC\) ( Vì AD = BC ) (1)
Xét \(\Delta ABO\) đều , có E là trung điểm AO => BE là đường trung tuyến của tam giác ABO => BE là đường cao của tam giác ABO
\(\Rightarrow BE⊥AC\left\{E\right\}\)
- Xét tam giác EBC vuông tại E , có : BK = KC => EK là trung tuyến ứng với cạnh BC trong tam giac vuông EBC
=> \(EK=\frac{1}{2}BC\) (2)
- Xét tam giác OCD , có
+ OD = OC ( Vì BD = AC và OB = OA => BD-OB = AC - OA => OD = OC )
+ \(\widehat{COD}=60^o\)( Vì tam giác OAB đều )
=> tam giác OCD đều
-Xét tam giác đều OCD , có FO = FD => CF là trung tuyến của tam giác OCD => CF là đường cao của tam giác OCD
HAy \(CF⊥BD\left\{F\right\}\)
- Xét tam giác FBC vuông tại F , có BK = KC (gt)
=> FK là đường trung tuyến của tam giác vuông FBC ứng với cạnh BC
=> \(FK=\frac{1}{2}BC\) (3)
TỪ (1) , (2) và (3) , ta có : \(EF=EK=FK\left(=\frac{1}{2}BC\right)\)
=>>>> tam giác EFK đều
không
vì chưa có ghi lại cảnh ông già vào từng nhà trong khi FBI và CIA có thể theo dõi
Ông già Noel hoàn toàn có thật.