K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 1 2022

không

vì chưa có ghi lại cảnh ông già vào từng nhà trong khi FBI và CIA có thể theo dõi

3 tháng 1 2022

Ông già Noel hoàn toàn có thật.

23 tháng 7 2017

Chu vi của tam giác abc là

ab+bc+c=25                (1)

chu vi của tam giác acd là      (2)

ac+cd+da=17         (3)

chu vi của tứ giác abcd là

ab+bc+cd+da=32

từ (1) và (2) ta có :

ab+bc+ac+ac+cd+da=25+27=52

=>(ab=bc=cd=da)+2ac=52    (4)

từ (1) và (4)

<=> 32+2ac=52

=>2ac =52 - 32 =20

=>ac=20:2=10

vậy ac = 10cm

1 tháng 8 2019

thực ra đề gốc hỏi x+y có phải là số chính phương hay không, x,y,z thuộc N*, có bạn làm thế này:

\(\frac{1}{x}+\frac{1}{y}=\frac{1}{z}\Leftrightarrow z.\left(x+y\right)=xy\)

Giả sử x+y là số chính phương. Đặt x+y=k2

mà \(z.\left(x+y\right)=xy\)

\(\Leftrightarrow zk^2=xy\)

Vì x,y là số nguyên tố => 1 trong 2 số chia hết cho kvì x,y,z thuộc N*

Giả sử x=n.k2 (n thuộc N*)

mà \(zk^2=xy\)

\(\Leftrightarrow zk^2=n.k^2.y\Leftrightarrow z=n.y\Leftrightarrow\frac{z}{y}=n\), vì x,y là 2 số nguyên tố cùng nhau => n không thuộc N*(vô lí)

vậy x+y ko phải số chính phương

Bạn đó làm đã đúng chưa, nếu sai hãy sửa lại :v 

1 tháng 8 2019

Thử, đúng hay sai thì tùy, mình mới học sơ sơ dạng này thôi, nếu sai xin đừng bốc phốt...:v

Theo đề bài\(z\left(x+y\right)=xy\Leftrightarrow x+y=\frac{xy}{z}\) và (x;y;z) = 1

Giả sử x + y là số chính phương khi đó \(\frac{xy}{z}=k^2\left(k\inℕ^∗\right)\Leftrightarrow xy=k^2.z\)

Suy ra xy chia hết cho z. Mà x, y, z nguyên tố cùng nhau nên x và y đều không chia hết cho z.

\(\Rightarrow xy=z\). Khi đó \(\left(x;y;z\right)=1\Leftrightarrow\left(x;y\right)=\left(y;z\right)=1\Leftrightarrow\left(x;y\right)=\left(y;xy\right)=1\) (vô lí vì

\(\left(y;xy\right)=y\))

Vậy ko tồn tại x, y,z..

18 tháng 3 2022

TL:

Vì nó cầm dao và đấm vào ngực nó (đười ươi hay làm thế).

HT~

@@@@@@

18 tháng 3 2022

Vì nó cầm dao và đấm đấm vào ngực của nó.

Thói quen mà. gần giống king kong ớ bạn

HT

Trả lời : a.Có lợi vì nói dễ bị ngã chứ chưa ngã có nghĩa là lực ma sát nghỉ sinh ra ở đây giúp ta đứng vững và khi di chuyển sẽ ko bị ngã.

Trả lời : b.Giày đi mãi đế bị mòn vì ma sát của mặt đường với đế giày làm mòn đế. Ma sát trong trường hợp này là có hại.

mong bạn  

26 tháng 10 2020

a.Có lợi vì nói dễ bị ngã chứ chưa ngã có nghĩa là lực ma sát nghỉ sinh ra ở đây giúp ta đứng vững và khi di chuyển sẽ ko bị ngã.

b.Giày đi mãi đế bị mòn vì ma sát của mặt đường với đế giày làm mòn đế.Ma sát trong trường hợp này có hại.

3 tháng 7 2017

\(P=a\left(2a-3\right)-2a\left(a+1\right)+5\)

\(=2a^2-3a-2a^2-2a+5\)

\(=\left(2a^2-2a^2\right)-\left(3a+2a\right)+5\)

\(=-5a+5=-5\left(a-1\right)⋮5\)

3 tháng 8 2019

mk nghĩ là người đàn ông vì đàn bà thì hóa trang thành trai đâu có j lạ

nhưng người đàn ông mặc váy, đeo giày cao gót sẽ ko quen

7l-3l=4l chia 2 ra 

nhan 2.5 lan len la ra

không bit

23 tháng 8 2019

ha he hi la tro nhe ae

23 tháng 7 2017

- Xét \(\Delta OAD\)có :   EA = EO (gt)      ;       FO = FD (gt)

= >       EF là đường trung bình của \(\Delta OAD\) =>   \(EF=\frac{1}{2}AD=\frac{1}{2}BC\) ( Vì AD = BC )                (1)

Xét \(\Delta ABO\) đều , có E là trung điểm AO =>   BE là đường trung tuyến của tam giác ABO =>  BE là đường cao của tam giác ABO

\(\Rightarrow BE⊥AC\left\{E\right\}\)

- Xét tam giác EBC vuông tại E , có : BK = KC =>  EK là trung tuyến ứng với cạnh BC trong tam giac vuông EBC

=>   \(EK=\frac{1}{2}BC\) (2)

- Xét tam giác OCD , có 

+ OD = OC ( Vì BD = AC và OB = OA =>   BD-OB = AC - OA  =>   OD = OC   )

\(\widehat{COD}=60^o\)( Vì tam giác OAB đều )

=> tam giác OCD đều 

-Xét tam giác đều OCD , có FO = FD =>   CF là trung tuyến của tam giác OCD  =>   CF  là đường cao của tam giác OCD

HAy  \(CF⊥BD\left\{F\right\}\)

- Xét tam giác FBC vuông tại F , có BK = KC (gt)

=> FK là đường trung tuyến của tam giác vuông FBC ứng với cạnh BC

=>  \(FK=\frac{1}{2}BC\)  (3)

TỪ (1) , (2) và (3) , ta có  :  \(EF=EK=FK\left(=\frac{1}{2}BC\right)\)

=>>>> tam giác EFK đều

23 tháng 7 2017

cảm ơn nhiều nha Trần Anh