Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Ta có: \(\widehat{CHB}=90^0\)
=>ΔCHB vuông tại H
=>ΔCHB nội tiếp đường tròn đường kính CB(4)
Ta có: \(\widehat{CKB}=90^0\)
=>ΔCKB vuông tại K
=>ΔCKB nội tiếp đường tròn đường kính CB(5)
Từ (4) và (5) suy ra C,H,B,K cùng thuộc đường tròn đường kính CB
b:
Xét (O) có
ΔACB nội tiếp
AB là đường kính
Do đó: ΔACB vuông tại C
Ta có: \(\widehat{OCB}+\widehat{BCK}=\widehat{OCK}=90^0\)
\(\widehat{OCB}+\widehat{OCA}=\widehat{BCA}=90^0\)
Do đó: \(\widehat{BCK}=\widehat{OCA}\)(1)
Ta có: CHBK là tứ giác nội tiếp
=>\(\widehat{BCK}=\widehat{BHK}\left(2\right)\)
Xét ΔOAC có OC=OA
nên ΔOAC cân tại O
=>\(\widehat{OAC}=\widehat{OCA}\)(3)
Từ (1),(2),(3) suy ra \(\widehat{BHK}=\widehat{OAC}\)
mà hai góc này là hai góc ở vị trí đồng vị
nên HK//AC
Xét tứ giác CHBK có
\(\widehat{CHB}+\widehat{CKB}=90^0+90^0=180^0\)
=>CHBK là tứ giác nội tiếp
=>C,H,B,K cùng thuộc một đường tròn
Bạn tự vẽ hình nha:
a)Ta có: gócBCD=gócA (cùng chắn cung BC); gócBCE=gócA (cùng phụ với góc CBA) => CB là pg DCE
b)Vì CB là pg DCE hay CB là pg KCH mà BK vuông góc CK; BH vuông góc CH => BK=BH => BK+BD=BD+BH=DH<ED (quan hệ giữa đường vuông góc với đường xiên)
c)Vì CB là pg của tam giác CDH => BH/BD=CH/CD (1); Mà CB vuông góc CA => Ca là pg ngoài tại C của tam giác CDH => AH/AD=CH/CD (2) .
Từ (1) và (2) suy ra: BH/BD=AH/AD (=CH/CD) <=> BH.AD=AH.BD