Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án : Hội trường có 10 dãy ghế hoặc 20 dãy ghế, giải thích các bước giải :
Gọi số ghế ban đầu là x, x thuộc N* => ban đầu mỗi dãy ghế có 200/x ghế
=> Vì phải kê thêm 2 dãy ghế => Ta có x + 2 dãy ghế
=> Vì mỗi dãy phải ngồi thêm 2 người => mỗi dãy lại có : 200/x + 2 ghế
=> Số người đc ngồi là : ( x + 2 ) . ( 200/x + 2 ). Vì có 6 người k có ghế nên ( x + 2). ( 200/x + 2 ) +6= 270
=> ( x +2). ( 200/x + 2) = 264
=> ( x +2). ( 200 +2x ) = 264x
=> 2x2 + 400 + 204x = 264x
=> 2x2 - 60x + 4000 = 0
=> 2(x-10 ). ( x -20 ) = 0, Kết luận vậy từ đây ta có thể suy ra đc x thuộc { 10; 20 }
Cần phần đảo với phần giới hạn (nếu có) thôi nha mọi người, em làm được phần thuận rồi.
A B C H I M
Thuận: Lấy M là trung điểm BC. Khi đó IM là đường trung bình của \(\Delta\)BHC => IM // HC
Vì HC vuông góc BH nên IM vuông góc BH hay ^BIM = 900 => I thuộc đường tròn (MB)
M là trung điểm đoạn BC cố định => BM cố định => I di chuyển trên (MB) cố định.
Đảo: M là trung điểm BC, đường tròn (BM) cắt BH tại I. Có ngay MI // CH
Xét \(\Delta\)CBH có: M là trung điểm BC, MI // HC, I thuộc BH => I là trung điểm BH.
Giới hạn: Xét A không trùng với B,C. Theo chứng minh phần thuận thì I nằm trên (BM)
Xét A trùng B: Khi đó AC trùng BC. Mà BH vuông góc AC tại H nên H trùng B => I trùng B
Xét A trùng C: Suy ra BH trùng BC. Khi đó trung điểm I của BH trùng với M
Vậy điểm I di động trên cả đường tròn đường kính BM.
bn lên mang tìm xem chứ mk thấy có rất nhiều tài liệu hay còn có đáp án nữa
http://tailieu.vn/doc/tuyen-tap-cac-dang-bai-tap-phuong-trinh-dai-so-lop-8-1716537.html
sao cái link lại nha
là bản đồ
bản đồ ^^ đó bạn