Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a) A= x2 + 4x + 5
=x2+4x+4+1
=(x+2)2+1\(\ge\)0+1=1
Dấu = khi x+2=0 <=>x=-2
Vậy Amin=1 khi x=-2
b) B= ( x+3 ) ( x-11 ) + 2016
=x2-8x-33+2016
=x2-8x+16+1967
=(x-4)2+1967\(\ge\)0+1967=1967
Dấu = khi x-4=0 <=>x=4
Vậy Bmin=1967 <=>x=4
Bài 2:
a) D= 5 - 8x - x2
=-(x2+8x-5)
=21-x2+8x+16
=21-x2+4x+4x+16
=21-x(x+4)+4(x+4)
=21-(x+4)(x+4)
=21-(x+4)2\(\le\)0+21=21
Dấu = khi x+4=0 <=>x=-4
b)đề sai à
ài 1:
a) A= x2 + 4x + 5
=x2+4x+4+1
=(x+2)2+1$\ge$≥0+1=1
Dấu = khi x+2=0 <=>x=-2
Vậy Amin=1 khi x=-2
b) B= ( x+3 ) ( x-11 ) + 2016
=x2-8x-33+2016
=x2-8x+16+1967
=(x-4)2+1967$\ge$≥0+1967=1967
Dấu = khi x-4=0 <=>x=4
Vậy Bmin=1967 <=>x=4
Bài 2:
a) D= 5 - 8x - x2
=-(x2+8x-5)
=21-x2+8x+16
=21-x2+4x+4x+16
=21-x(x+4)+4(x+4)
=21-(x+4)(x+4)
=21-(x+4)2$\le$≤0+21=21
Dấu = khi x+4=0 <=>x=-4
b)đề sai à
A=(x-1)(x+2)(x+3)(x+6)+12
=[ (x-1)(x+6) ][(x+2)(x+3)] +12
=( x2+5x-6)( x2+5x+6) +12
=(x^2+5x)2 - 62 +12
=(x2+5x)2- 36+ 12
=(x2+5x)2 - 24
nhận xét ta thấy (x2+5x)2 >=0
nên (x2+5x)2 -24 >= - 24
dấu bằng xảy ra khi và chỉ khi
x2+5x = 0
=> x(x+5) = 0
=> \(\orbr{\begin{cases}x=0\\x+5=0\end{cases}}\)=> \(\orbr{\begin{cases}x=0\\x=-5\end{cases}}\)
vậy giá trị nhỏ nhất của A là -24 tại x=0 hoặc x= -5
A=(x-1)(x+2)(x+3)(x+6) + 12
A=[(x-1)(x+6)][(x+2)(x+3)] + 12
A=(x2-x+6x-6)(x2+2x+3x+6) + 12
A=(x2+5x-6)(x2+5x+6) + 12
A= (x2+5x)2 - 62 + 12
A= (x2+5x)2 - 36 + 12
A=(x2+5x)2 - 24 \(\ge\)24
GTNN của A là -24 <=> (x2+5x)2 = 0 <=> x2+5x=0 <=> x(x+5)=0 <=> x=0 hoặc x=-5
Điều kiện x ≠ -2 và x ≠ 0
Vì x + 1 2 ≥ 0 nên - x + 1 2 ≤ 0 ⇒ - x + 1 2 - 1 ≤ - 1
Khi đó biểu thức có giá trị lớn nhất bằng -1 khi x = -1
Vậy biểu thức đã cho có giá trị lớn nhất bằng -1 tại x = -1.
\(1;a,A=x^2+20x+101\)
\(A=x^2+2.10x+10^2+1\)
\(A=\left(x+10\right)^2+1\ge1\)
Dấu "=" xảy ra khi x = -10
Vậy Min A = 1 <=> x = -10
Điều kiện x ≠ 2 và x ≠ 0
Vì x - 1 2 ≥ 0 nên x - 1 2 + 2 ≥ 2 với mọi giá trị của x.
Khi đó giá trị nhỏ nhất của biểu thức bằng 2 khi x = 1.
Vậy biểu thức đã cho có giá trị nhỏ nhất bằng 2 tại x = 1.
Bài 2:
a: Ta có: \(x^2+x+1\)
\(=x^2+2\cdot x\cdot\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{3}{4}\)
\(=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\forall x\)
Dấu '=' xảy ra khi \(x=-\dfrac{1}{2}\)
b: Ta có: \(-x^2+x+2\)
\(=-\left(x^2-x-2\right)\)
\(=-\left(x^2-2\cdot x\cdot\dfrac{1}{2}+\dfrac{1}{4}-\dfrac{9}{4}\right)\)
\(=-\left(x-\dfrac{1}{2}\right)^2+\dfrac{9}{4}\le\dfrac{9}{4}\forall x\)
Dấu '=' xảy ra khi \(x=\dfrac{1}{2}\)
f: Ta có: \(x^2-2x+y^2-4y+6\)
\(=x^2-2x+1+y^2-4y+4+1\)
\(=\left(x-1\right)^2+\left(y-2\right)^2+1\ge1\forall x,y\)
Dấu '=' xảy ra khi x=1 và y=2
e: Ta có: \(3x^2-6x+1\)
\(=3\left(x^2-2x+\dfrac{1}{3}\right)\)
\(=3\left(x^2-2x+1-\dfrac{2}{3}\right)\)
\(=3\left(x-1\right)^2-2\ge-2\forall x\)
Dấu '=' xảy ra khi x=1
Bài 1:
a: Ta có: \(\left(x^2-9\right)^2-\left(x-3\right)^2=0\)
\(\Leftrightarrow\left(x-3\right)^2\cdot\left[\left(x+3\right)^2-1\right]=0\)
\(\Leftrightarrow\left(x-3\right)^2\cdot\left(x+2\right)\left(x+4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-2\\x=-4\end{matrix}\right.\)
b: Ta có: \(x^3-3x+2=0\)
\(\Leftrightarrow x^3-x-2x+2=0\)
\(\Leftrightarrow x\left(x-1\right)\left(x+1\right)-2\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^2+x-2\right)=0\)
\(\Leftrightarrow\left(x-1\right)^2\left(x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-2\end{matrix}\right.\)
1, Ta có: 3-x2+2x=-(x2-2x+1)+4=-(x-1)2+4
vì (x-1)2 luôn lớn hơn hoặc bằng không với mọi x-->-(x-1)2 nhỏ hơn hoặc bằng 0 với mọi x
vậy giá trị lớn nhất của biểu thức 3-x2+2x là 4
các bài giá trị nhỏ nhất còn lại làm tương tự bạn nhé
chỉ cần đưa về nhân tử chung hoặc hằng đẳng thức là được
`x^2+x+1=x^2+x+1/4+3/4=(x+1/2)^2 +3/4`
Vì `(x+1/2)^2 >= 0` với mọi `x`
`=>(x+1/2)^2 +3/4 >= 3/4` với mọi `x`
`=>` Biểu thức Min `=3/4<=>x=-1/2`
_____________
`(x-3)(x+5)+4=x^2+2x-11=x^2+2x+1-12=(x+1)^2-12`
Vì `(x+1)^2 >= 0` với mọi `x`
`=>(x+1)^2-12 >= -12` với mọi `x`
`=>` Biểu thức Min `=-1/2<=>x=-1`