Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hệ thức Anh -xtanh:
\(hf_1 = A+eU_h=A+eV_1.\)
\(hf_2 =A+eU_h= A+eV_2.\)
Mà f1 < f2 => \(hf _1 < hf_2\)
Lại có A không đổi => \(eV_1 < eV_2\) hay \(V_1 < V_2\).
Nếu chiếu đồng thời hai bức xạ có tần số lần lượt là f1, f2 (f1 < f2) thì hiệu điện thế cực đại của nó đạt được là \(V_2\).
Chiếu bức xạ λ vào quả cầu kim loại cô lập về điện, thì điện thế cực đại là V, ta có: \(\dfrac{hc}{\lambda}=A_t+W_đ\), với \(W_đ=e.V\)
Chiếu bức xạ λ1: \(\dfrac{hc}{\lambda_1}=A_t+W_{đ1}=2W_{đ1}+W_{đ1}=3W_{đ1}=3.eV_1\)
\(\Rightarrow \dfrac{\lambda_1}{hc}=\dfrac{1}{3eV_1}\) (1)
Với \(A_t=2W_{đ1}=2.eV_1\)
Chiếu bức xạ λ2: \(\dfrac{hc}{\lambda_2}=A_t+W_{đ2}=2.eV_1+5eV_1=7eV_1\)
\(\Rightarrow \dfrac{\lambda_2}{hc}=\dfrac{1}{7eV_1}\) \(\Rightarrow \dfrac{\lambda_1-\lambda}{hc}=\dfrac{1}{7eV_1}\) (2)
Lấy (1) - (2) vế với vế: \(\Rightarrow \dfrac{\lambda}{hc}=\dfrac{4}{21.eV_1}\)
\(\Rightarrow \dfrac{hc}{\lambda}=5,25.eV_1=2eV_1+3,25eV_1=A_t+3,25eV_1\)
Suy ra điện thế cực đại của quả cầu là: \(3,25eV_1\)
Chọn C.
\(\lambda = v/f = 0,04m=4cm.\)
\(\triangle \varphi =0\)
Số điểm dao động cực đại trên đoạn thẳng đường kính 2R là:
\(-2R\leq d_2-d_1\leq 2R \Rightarrow -2R\leq (k+\frac{\triangle\varphi)}{2 \pi}\lambda\leq 2R \Rightarrow -2R \leq k.\lambda \leq 2R \\ \Rightarrow \frac{-2R}{\lambda}\leq k \leq \frac{2R}{\lambda} \Rightarrow -1,5 \leq k \leq 1,5 \Rightarrow k=-1,0,1\)
=> trên đường tròn bán kính R có 6 điểm dao động với biên độ cực đại.