Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
không làm thì thôi đi rối mắt kệ các bạn chứ ai hỏi đâu mà phô ra
Thùy Giang : bn nói đúng , bọn này ngu mà cứ thích cmt linh tinh
ta có (a+b-c/c)+2=(a-b+c/b)+2=(-a+b+c/a)+2
=>a+b-c+2c/c=a-b+c+2b/b=-a+b+c+2a/a
=>a+b+c/c=a+b+c/b=a+b+c/a (1)
Trường hợp 1
Nếu a+b+c=0 => a+b=-c
=> b+c=-a
=> a+c=-b
M= (-c)(-a)(-a)/abc = -1
Trường hợp 2
Từ (1) =>(a+b+c). 1/c =(a+b+c). 1/b =(a+b+c). 1/a
=>1/a=1/b=1/c
Từ (1) =>3(a+b+c)/a+b+c=3
hay (a+b/c)+1=(a+c/b)+1=(b+c/a)=2
Nguyễn Trọng Tâm Đạt làm sai một TH nhé =)
trường hợp 2
\(\frac{a+b-c}{c}=\frac{a-b+c}{b}=\frac{-a+b+c}{a}\)
\(2+\frac{a+b-c}{c}=2+\frac{a-b+c}{b}=2+\frac{-a+b+c}{a}\)
\(\Rightarrow\frac{a+b+c}{c}=\frac{a+b+c}{b}=\frac{a+b+c}{a}\)
\(\Rightarrow a=b=c\)
thay a=b=c vào M ta có
\(M=\frac{\left(b+b\right).\left(b+c\right).\left(c+a\right)}{a.b.c}=\frac{2a.2a.2a}{aaa}=\frac{8.a^3}{a^3}=8\)
Câu hỏi của Chu Hoàng THủy Tiên - Toán lớp 7 - Học toán với OnlineMath
cộng thêm 1 của mỗi đẳng thức :
\(\frac{a}{b+c}+1=\frac{c}{a+b}+1=\frac{b}{c+a}+1\)
hay \(\frac{a+b+c}{b+c}=\frac{a+b+c}{a+b}=\frac{a+b+c}{c+a}\)
với a + b + c = 0 thì :
b + c = -a ; a + b = -c ; c + a = -b
nên \(20.\left(\frac{a}{b+c}\right)+3.\left(\frac{c}{a+b}\right)+1998.\left(\frac{b}{c+a}\right)=20.\left(\frac{a}{-a}\right)+3.\left(\frac{c}{-c}\right)+1998.\left(\frac{b}{-b}\right)\)
hay \(20.\left(-1\right)+3.\left(-1\right)+1998.\left(-1\right)=-20+\left(-3\right)+\left(-1998\right)=-2021\)
với a + b + c khác 0 thì : a = b = c
nên \(20.\left(\frac{a}{b+c}\right)+3.\left(\frac{c}{a+b}\right)+1998.\left(\frac{b}{c+a}\right)=20.\frac{1}{2}+3.\frac{1}{2}+1998.\frac{1}{2}=\frac{2021}{2}\)
Nếu a+b+c = 0 => Biểu thức = 20.(-1)+3.(-1)+1998.(-1) = -2021
Nếu a+b+c khác 0 thì :
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
a/b+c = c/a+b = b/c+a = a+b+c/2a+2b+2c = 1/2
=> Biểu thức = 20.1/2+3.1/2+1998.1/2 = 2021/2
Vậy ............
k mk nha
a) ta có: \(\frac{x+13}{2006}+\frac{x+2006}{13}+\frac{x+1}{2018}+3=0\)
\(\Rightarrow\frac{x+13}{2006}+1+\frac{x+2006}{13}+1+\frac{x+1}{2018}+1=0\)
\(\Rightarrow\frac{x+2019}{2006}+\frac{x+2019}{13}+\frac{x+2019}{2018}=0\)
\(\Rightarrow\left(x+2019\right)\left(\frac{1}{2006}+\frac{1}{13}+\frac{1}{2018}\right)=0\)
mà \(\frac{1}{2006}+\frac{1}{13}+\frac{1}{2018}>0\)
\(\Rightarrow x+2019=0\)
\(\Rightarrow x=-2019\)
b) \(\frac{4}{\left(x+3\right)\left(x+7\right)}+\frac{3}{\left(x+7\right)\left(x+10\right)}=\frac{x}{\left(x+3\right)\left(x+10\right)}\)
\(\Rightarrow\frac{\left(x+7\right)-\left(x+3\right)}{\left(x+3\right)\left(x+7\right)}+\frac{\left(x+10\right)-\left(x+7\right)}{\left(x+7\right)\left(x+10\right)}=\frac{x}{\left(x+3\right)\left(x+10\right)}\)
\(\Rightarrow\frac{1}{x+3}-\frac{1}{x+7}+\frac{1}{x+7}-\frac{1}{x+10}=\frac{x}{\left(x+3\right)\left(x+10\right)}\)
\(\Rightarrow\frac{1}{x+3}-\frac{1}{x+10}=\frac{x}{\left(x+3\right)\left(x+10\right)}\)
\(\Rightarrow\frac{7}{\left(x+3\right)\left(x+10\right)}=\frac{x}{\left(x+3\right)\left(x+10\right)}\)
\(\Rightarrow x=7\)