Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bước đầu mình nhóm số hạng thứ nhất với thứ ba; số hạng thứ hai với thứ 4; sau đó sử dụng tính chất a.b + a.c = a(b+c)
nên ta có M = (x4 + x3y) - (xy3 + y4) - 1 = (x3. x + x3y) - (xy3 + y. y3) - 1 = x3.(x+y) - y3.(x+y) - 1
= x3. 0 - y3 .0 -1 = -1
x+y+1=0 suy ra x+y=1
Làm câu A nhé B,C tương tự
A= x^2.(x+y-2)-(xy+y^2-2y)+(y+x-1)=0-y.(x+y-2)+1=1
Hok tốt
N= x4- xy3+ x3y-y4-1
N = (x^4 - y^4) - xy(y^2 - x^2) -1
N = (x^2 - y^2)(x^2 + y^2) - xy(y - x)(x + y) - 1
N = (x - y)(x + y)(x^2 + y^2) - xy(y - x)(x + y) - 1
x + y = 0
N = -1
a)\(A=x^3+x^2y-xy-y^2+3y+x-1\)
Ta có:\(x+y-2=0\Rightarrow x+y=2\)
\(A=x^2\left(x+y\right)-y\left(x+y\right)+3y+x-1\)
\(=2x^2-2y+3y+x-1\)
\(=2x^2+y+x-1\)
\(=2x^2+2-1\)
\(=2x^2+1\)
b) x - y = 0 => x = y
B = x( x^2 + y^2 ) - y ( x^2 + y^2 ) + 3
= x(x^2 + x^2 ) - x (x^2 + x^2 ) + 3
= 3
Lời giải:
\(M=x^3+x^2y-2x^2-xy-y^2+3y+x-1\)
\(=(x^3+x^2y-2x^2)-(xy+y^2-2y)+y+x-1\)
\(=x^2(x+y-2)-y(x+y-2)+(y+x-2)+1\)
\(=x^2.0-y.0+0+1=1\)
\(N=x^3-2x^2-xy^2+2xy+2y-2x-2\)
\(=(x^3-2x^2+x^2y)-(x^2y+xy^2-2xy)+2y+2x-4-4x+2\)
\(=x^2(x-2+y)-xy(x+y-2)+2(y+x-2)-4x+2\)
\(=x^2.0-xy.0+2.0-4x+2=2-4x\) (không tính được giá trị cụ thể, bạn thử xem lại đề)
\(P=(x^4+x^3y-2x^3)+(x^3y+x^2y^2-2x^2y)-x(x+y-2)\)
\(=x^3(x+y-2)+x^2y(x+y-2)-x(x+y-2)\)
\(=x^3.0+x^2y.0-x.0=0\)
Ta có:\(M=x^4-xy^3+x^3y-y^4-1\)
\(M=\left(x^4-y^4\right)-\left(xy^3-x^3y\right)-1\)
\(M=\left(x^4-y^4\right)-xy\left(y^2-x^2\right)-1\)
Mà x+y=0
\(\Rightarrow x=-y\)
\(\Rightarrow M=\left[\left(-y\right)^4-y^4\right]-xy\left[y^2-\left(-y\right)^2\right]-1\)
\(M=\left(y^4-y^4\right)-xy\left(y^2-y^2\right)-1\)
\(M=0-0-1\)
\(M=-1\)
Ta có: x+y=0=> x=0; y=0
\(\Rightarrow M=x^4-x\times y^3+x^3\times y-y^4-1\)
\(\Rightarrow M=\left[x^4-\left(x^3+x\right)\right].\left[y^4-\left(y^3+y\right)\right]-1\)
\(\Rightarrow M=\left[x^4-x^4\right]\times\left[y^4-y^4\right]-1\)
\(\Rightarrow M=0\times0-1\)
\(\Rightarrow M=-1\)
Vậy M=-1
Choa ko chắc đâu nha