Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1, \(25x^2-10xy+y^2=\left(5x-y\right)^2\)
2, \(8x^3+36x^2y+54xy^2+27y^3=\left(2x+3y\right)^3\)
4, \(\left(a+b+c\right)^3-a^3-b^3-c^3\)
\(=a^3+b^3+c^3+3\left(a+b\right)\left(b+c\right)\left(a+c\right)-a^3-b^3-c^3\)
\(=3\left(a+b\right)\left(b+c\right)\left(a+c\right)\)
5, \(2x^3+3x^2+2x+3\)
\(=x^2\left(2x+3\right)+2x+3\)
\(=\left(x^2+1\right)\left(2x+3\right)\)
6, \(x^3z+x^2yz-x^2z^2-xyz^2\)
\(=x^3z-x^2z^2+x^2yz-xy^2\)
\(=xz\left(x^2-xz\right)+xz\left(xy-yz\right)\)
\(=xz\left[x\left(x-z\right)+y\left(x-z\right)\right]\)
\(=xz\left(x+y\right)\left(x-z\right)\)
8, \(x^3+3x^2y+3xy^2+y+y^3\)\(=\left(x+y\right)^3+y\)
9, \(x^2-6x+8\)
\(=x^2-4x-2x+8\)
\(=x\left(x-4\right)-2\left(x-4\right)\)
\(=\left(x-2\right)\left(x-4\right)\)
10, \(x^2-8x+12\)
\(=x^2-6x-2x+12\)
\(=x\left(x-6\right)-2\left(x-6\right)\)
\(=\left(x-2\right)\left(x-6\right)\)
Chỗ còn lại mai làm nốt nha.
Gặp chút sự cố đăng nhập nên hơi muộn, xin lỗi nha
11, \(a^2\left(b-c\right)+b^2\left(c-a\right)+c^2\left(a-b\right)\)
\(=a^2b-a^2c+b^2c-b^2a+c^2a-c^2b\)
\(=a^2b-ab^2+abc-a^2c+b^2c-abc+ac^2-c^2b\)
\(=ab\left(a-b\right)-ac\left(a-b\right)-bc\left(a-b\right)+c^2\left(a-b\right)\)
\(=\left(a-b\right)\left(ab-ac-bc+c^2\right)\)
\(=\left(a-b\right)\left[b\left(a-c\right)-c\left(a-c\right)\right]\)
\(=\left(a-b\right)\left(a-c\right)\left(b-c\right)\)
12, \(x^3-7x-6\)
\(=x^3-3x^2+3x^2-9x+2x-6\)
\(=x^2\left(x-3\right)+3x\left(x-3\right)+2\left(x-3\right)\)
\(=\left(x-3\right)\left(x^2+3x+2\right)\)
\(=\left(x-3\right)\left(x^2+x+2x+2\right)\)
\(=\left(x-3\right)\left[x\left(x+1\right)+2\left(x+1\right)\right]\)
\(=\left(x-3\right)\left(x+2\right)\left(x+1\right)\)
13, \(x^4+4\)
\(=x^4+4x^2+4-4x^2\)
\(=\left(x^2+2\right)^2-4x^2\)
\(=\left(x^2-2x+2\right)\left(x^2+2x+2\right)\)
14, \(a^4+64\)
\(=a^4+16a^2+64-16a^2\)
\(=\left(a^2+8\right)^2-16a^2\)
\(=\left(a^2-4a+8\right)\left(a^2+4a+8\right)\)
15, \(x^5+x+1\)
\(=x^5-x^2+x^2+x+1\)
\(=x^2\left(x^3-1\right)+x^2+x+1\)
\(=x^2\left(x-1\right)\left(x^2+x+1\right)+x^2+x+1\)
\(=\left(x^2+x+1\right)\left[x^2\left(x-1\right)+1\right]\)
16, \(x^5+x-1\)
\(=x^5-x^4+x^3+x^4-x^3+x^2-x^2+x-1\)
\(=x^3\left(x^2-x+1\right)-x^2\left(x^2-x+1\right)-\left(x^2-x+1\right)\)
\(=\left(x^2-x+1\right)\left(x^3-x^2-1\right)\)
17, \(\left(x^2+x\right)^2-2\left(x^2+x\right)-15\)
\(=\left(x^2+x\right)\left(x^2+x-2\right)-15\)
19, \(\left(x^2+8x+7\right)\left(x^2+8x+15\right)+15\) (*)
Đặt \(x^2+8x+7=a\) ta có:
(*) \(\Leftrightarrow a\left(a+8\right)+15\)
\(\Leftrightarrow a^2+8a+15\)
\(\Leftrightarrow a^2+3a+5a+15\)
\(\Leftrightarrow a\left(a+3\right)+5\left(a+3\right)\)
\(\Leftrightarrow\left(a+3\right)\left(a+5\right)\)
Trả lại biến cũ ta có: (*) \(\Leftrightarrow\left(x^2+8x+10\right)\left(x^2+8x+12\right)\)
20, \(\left(x^2+3x+1\right)\left(x^2+3x+2\right)-6\) (*)
Đặt \(x^2+3x+1=a\) ta có:
(*) \(\Leftrightarrow a\left(a+1\right)-6\)
\(\Leftrightarrow a^2+a-6\)
\(\Leftrightarrow a^2+3a-2a-6\)
\(\Leftrightarrow a\left(a+3\right)-2\left(a+3\right)\)
\(\Leftrightarrow\left(a-2\right)\left(a+3\right)\)
Trả lại biến cũ ta có: (*) \(\Leftrightarrow\left(x^2+3x-1\right)\left(x^2+3x+5\right)\)
a. Thực hiện phép chia,ta được :
\(\left(x^4+ax^2+1\right):\left(x^2+x+1\right)=\left(x^2-x+a\right)\text{dư}\left(1-a\right)x+\left(b-a\right)\)
muốn chia hết thì đa thức dư phải đồng nhất bằng 0, tức là :
\(\left\{{}\begin{matrix}1-a=0\\b-a=a\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=1\\b=1\end{matrix}\right.\)
Vậy ...
Bài 1: Phân tích đa thức thành nhân tử
a) Ta có: \(3x\left(x-a\right)+5a^2-5ax\)
\(=3x\left(x-a\right)+5a\left(a-x\right)\)
\(=3x\left(x-a\right)-5a\left(x-a\right)\)
\(=\left(x-a\right)\left(3x-5a\right)\)
b) Ta có: \(x^3+8y^3+6x^2y+12xy^2\)
\(=x^3+3\cdot x^2\cdot2y+3\cdot x\cdot\left(2y\right)^2+\left(2y\right)^3\)
\(=\left(x+2y\right)^3\)
c) Ta có: \(3x\left(x+1\right)^2-5x^2\left(x+1\right)+7x+7\)
\(=3x\left(x+1\right)^2-5x^2\left(x+1\right)+7\left(x+1\right)\)
\(=\left(x+1\right)\left[3x\left(x+1\right)-5x^2+7\right]\)
\(=\left(x+1\right)\left(3x^2+3x-5x^2+7\right)\)
\(=\left(x+1\right)\left(-2x^2+3x+7\right)\)
f) Ta có: \(ab\left(a-b\right)+bc\left(b-c\right)+ca\left(c-a\right)\)
\(=a^2b-ab^2+b^2c-bc^2+c^2a-ca^2\)
\(=abc+a^2b-ab^2+b^2c-bc^2+c^2a-ca^2-abc\)
\(=\left(a^2b-abc\right)-\left(ab^2-b^2c\right)-\left(bc^2-ac^2\right)-\left(a^2c-abc\right)\)
\(=ab\left(a-c\right)-b^2\left(a-c\right)-c^2\left(b-a\right)-ac\left(a-b\right)\)
\(=\left(a-c\right)\left(ab-b^2\right)-c^2\left(b-a\right)+ac\left(b-a\right)\)
\(=b\left(a-c\right)\left(a-b\right)-\left(b-a\right)\left(c^2-ac\right)\)
\(=b\left(a-c\right)\left(a-b\right)+\left(a-b\right)\cdot c\cdot\left(c-a\right)\)
\(=b\left(a-c\right)\left(a-b\right)-c\left(a-b\right)\left(a-c\right)\)
\(=\left(a-b\right)\left(a-c\right)\left(b-c\right)\)
g) Ta có: \(\left(a+b+c\right)^3-a^3-b^3-c^3\)
\(=a^3+b^3+c^3+3\left(a+b\right)\left(b+c\right)\left(a+c\right)-a^3-b^3-c^3\)
\(=3\left(a+b\right)\left(a+c\right)\left(b+c\right)\)
Bài này chắc là sử dụng hệ số bất định để tìm a;b;c, nhưng như vậy biến đổi hơi lâu
Ta thấy ngay \(a^2c=20=2^2.5\) nên đoán \(a=2;c=5\)
Vậy tách vế trái để xuất hiện \(\left(x+2\right)^2=x^2+4x+4\)
\(x^4+7x^3+21x^2+32x+20\)
\(=x^4+4x^3+4x^2+3x^3+12x^2+12x+5x^2+20x+20\)
\(=x^2\left(x^2+4x+4\right)+3x\left(x^2+4x+4\right)+5\left(x^2+4x+4\right)\)
\(=\left(x+2\right)^2\left(x^2+3x+5\right)\) \(\Rightarrow\left\{{}\begin{matrix}a=2\\b=3\\c=5\end{matrix}\right.\)