Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
- Gọi chiều dài và chiều rộng của hình chữ nhật đó lần lượt là x, y ( x > y > 0 , m )
- Diện tích ban đầu của hình chữ nhật đó là : xy ( m2 )
- Theo dữ kiện bài ra ta có hệ phương trình :
\(\left\{{}\begin{matrix}\left(x+2\right)\left(y+2\right)=xy+66\\\left(x-2\right)\left(y-3\right)=xy-74\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}xy+2x+2y+4=xy+66\\xy-3x-2y+6=xy-74\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x+2y=62\\-3x-2y=-80\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=18\\y=13\end{matrix}\right.\) ( TM )
Vậy ...
Gọi chiều dài,chiều rộng lần lượt là a,b
Theo đề, ta có: (a+2)(b-3)=ab+100 và (a-2)(b-2)=ab-68
=>-3a+2b=106 và -2a-2b=-64
=>a=-42/5
=>Đề sai rồi bạn
Gọi a(m) và b(m) lần lượt là chiều dài và chiều rộng của vườn cây(Điều kiện: a>0; b>0 và a>=b)
Diện tích ban đầu của vườn cây là: ab(m2)
Vì khi tăng mỗi cạnh lên 2m thì diện tích tăng thêm 28m2 nên ta có phương trình:
(a+2)(b+2)=ab+28
\(\Leftrightarrow ab+2a+2b+4=ab+28\)
\(\Leftrightarrow2a+2b=24\)
hay a+b=12(1)
Vì khi giảm chiều dài 3m và tăng chiều rộng lên 1m thì diện tích giảm 7m2 nên ta có phương trình:
(a-3)(b+1)=ab-7
\(\Leftrightarrow ab+a-3b-3=ab-7\)
\(\Leftrightarrow a-3b=-4\)(2)
Từ (1) và (2) ta lập được hệ phương trình:
\(\left\{{}\begin{matrix}a+b=12\\a-3b=-4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}4b=16\\a+b=12\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=4\left(nhận\right)\\a=12-4=8\left(nhận\right)\end{matrix}\right.\)
Vậy: Chiều dài của vườn cây là 8m và chiều rộng của vườn cây là 4m
Gọi CD ban đầu là x (m) CR ban đầu là y (m) (x>y>0)
=> Diện tích vườn cây hình chữ nhật đó là: xy (m2)
Nếu tăng mỗi cạnh lên 2m => CD mới là x + 2 (m)
và CR mới là y +2 (m)
thì diện tích tăng thêm 28m vuông
=> (x + 2)(y +2) = xy + 28 (1)
Nếu giảm chiều dài 3m => CD mới là x - 3 (m)
và tăng chiều rộng lên 1m => CR mới là y + 1 (m)
thì diện tích giảm 7m vuông.
=> (x - 3)(y + 1) = xy -7 (2)
Từ (1) và (2) ta có hpt: (Bạn tự giải nhé)
Gọi x(m) là chiều rộng của hcn ⇒ 4x (m) là chiều dài của hcn.
Theo đề: \((x-2).(2.4x)=x.4x+20\Leftrightarrow x^2-4x-5=0\Leftrightarrow\left[\begin{array}{} x=5\\ x=-1(loại) \end{array} \right.\)
Vậy mảnh đất hcn có chiều rộng là 5m, chiều dài là 4.5=20m
Gọi chiều dài của mảnh đất hcn là x(m),chiều rộng của mảnh đất hcn là y(m) (0<y<x).
Diện tích ban đầu của mảnh đất đó là : xy(m2).
Sau khi tăng chiều dài 2m và chiều rộng thêm 5m thì diện tích mới của mản đất đó là:(x+2)(y=5) (m2). (1)
Vì nếu tăng chiều dài 2m và chiều rộng thêm 5m thì diện tích tăng thêm 120m2,nên ta có pt:(x+2)(y=5) -xy=120.
Sau khi giảm chiều dài 3m và chiều rộng đi 2m thì diện tích của mảnh đất đó là: (x-3)(y-2) (m2).
Vì Nếu giảm chiều dài 3m và chiều rộng đi 2m thì diện tích giảm 60m2,nên ta có pt : xy-(x-3)(y-2)=60. (2)
- Còn lại hệ pt tự giải nốt nhé
- gọi cdai và crong lần lượt là x, y (m) (x,y >0)
- theo bài ra ta có hệ pt: (x+2)(y+2)=xy+66
(x-2)(y-3)=xy-74
=> x=... , y=...
Vậy....