Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì p là số nguyên tố lớn hơn 3
=> p có dạng 3k+1; 3k+2 (k\(\inℕ^∗\))
Thay p=3k+1 vào 2p+1 ta có:
2p+1=2(3k+1)+1=6k+2+1=6k+3
Thấy \(\hept{\begin{cases}6k⋮3\\3⋮3\end{cases}\Rightarrow6k+3⋮3}\)
=> 2p+1 là hợp số (loại)
Thay p=3k+2 vào 2p+1 ta có:
2p+1=2(3k+2)+1=6k+5 là số nguyên tố (chọn)
Với p=3k+2 => 4p+1=4(3k+2)+1=12k+8+1=12k+9 là hợp số
Vậy với p là số nguyên tố lớn hơn 3 và 2p+1 cũng là số nguyên tố thì 4p+1 là hợp số
Vì p là số nguyên tố lớn hơn 3 nên p không chia hết cho 3
TH1 : p chia cho 3 dư 1
=> p = 3k + 1 ( k thuộc N*)
=> 2p + 1 = 6k + 3 chia hết cho 3
=> 2p + 1 không phải số nguyên tố
=> loại
TH2 : p chia 3 dư 2
=> p = 3k + 2 (k thuộc N*)
=> 4p + 1 = 12k + 9 chia hết cho 3
=> 4p + 1 là hợp số
p là số nguyên tố lớn hơn 5 nên p có dạng 3k+1 hoặc 3k+2.
+Nếu p = 3k+1 thì $$ chia hết cho 3 => 2p+1 không phải số nguyên tố => loại
+Vậy p có dạng 3k+2
Khi đó $$ chia hết cho 3.
Vậy 4p+1 là hợp số,
p>(=)5=>p có dạng 3k+1;3k+2
xét p=3k+1=>2p+1=2(3k+1)+1=3.2k+2+1=3.(2k+1) chia hết cho 3
=>2p+1 là hợp số(trái đề bài)
=>p=3k+2
=>4p+1=4(3k+2)+1=3.4k+8+1=3.4k+9=3(4k+3) chia hết cho 3
=>4p+1 là hợp số
vậy 4p+1 là hợp số
Vì 2p+1 là số nguyên tố
nên 2(2p+1) là hợp số
4p+2 là hợp số
=>4p+1 là hợp số
P là số nguyên tố lớn hơn 3 => P=3k+1 hoặc P=3k+2
=> 4P+1=12k+2 hoặc =12k+3
vậy là hợp số
P là số nguyên tố lớn hơn 3 nên P có 2 trường hợp \(\hept{\begin{cases}3k+1\\3k+2\end{cases}}\)
Xét trường hợp 1) \(P=3k+1\)
Ta có \(2P+1=2\left(3k+1\right)+1=6k+2+1=6k+2+1=6k+3\left(⋮3\right)\)nên là hợp số (loại)
Xét trường hợp 2) \(P=3k+2\)
Ta có \(2P+1=2\left(3k+2\right)+1=6k+4+1=6k+5\) là số nguyên tố theo đề bài nên ta chọn
Vậy \(4P+1=4\left(3k+2\right)+1=12k+8+1=12k+8+1=12k+9\) thấy \(12k\) và \(9\)đều \(⋮3\) nên \(12k+9\) là hợp số
Từ đó,suy ra \(4P+1\) là hợp số
\(\Rightarrowđpcm\)
vì p là số nguyên tố lớn hơn 3 => p có 2 dạng: p = 3k + 1 hoặc p = 3k +2 ( k \(\in\)N* )
- nếu p = 3k + 1 => 2p + 1 = 2 ( 3k+1 ) + 1
= 6k + 2 +1
= 6k + 3 \(⋮\)3 và lớn hơn 3
=> 2p+1 là hợp số ( loại, vì trái với đề bài )
do đo: p = 3k + 2
=> 4p + 1 = 4 ( 3k + 2 ) + 1
= 12k + 8 +1
= 12k + 9 \(⋮\)3 và lớn hơn 3.
=> 4p+1 là hợp số.
vậy: 4p+1 là hợp số.
SANG NĂM MỚI MK CHÚC CÁC BẠN VUI VẺ. tk mk nha. đúng 100%.
Vì p là số nguyên tố lớn hơn 3 nên p có một trong hai dạng : 3k+1 ; 3k+2
+)Nếu p=3k+1 =>2p+1=2.(3k+1)+1=6k+2+1=6k+3=3.(2k+1) chia hết cho 3
=>2p+1 là hợp số (trái với giả thiết , loại)
Vậy p chỉ co thể bằng 3k+2
=>4p+1=4.(3k+2)+1 =12k+8+1=12k+9=3.(4k+2) chia hết cho 3
=>4p+1 là hợp số
Vì p là số nguyên tố lớn hơn 3 => p có dạng 3k + 1 hoặc 3k + 2
Nếu p = 3k + 1 => 2p + 1 = 6k + 2 + 1 = 6k + 3 = 3.(2k + 1) chia hết cho 3 mà 2p + 1 lớn hơn 3 => 2p + 1 là hợp số (trái với đề bài) => loại.
Vậy p thuộc 3k + 2 => 4p + 1 = 12k + 8 + 1 = 12k + 9 = 3.(4k + 3) chia hết cho 3 mà 4p + 1 lớn hơn 3 => 4p + 1 là hợp số
Vậy ...