\(\forall x\in Q\), \(3x^2-10x+3=0\) "

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 1 2017

\(\overline{P}=\exists x\in R:x^2+4\le0\)

18 tháng 4 2017

a) \(\exists x\in R:x.1\ne x\)

mệnh đề phủ định sai.

b) \(\exists x\in R:x.x\ne1\)

mệnh đề phủ định đúng.

c) \(\exists n\in Z:n\ge n^2\)

mệnh đề phủ định đúng.

5 tháng 7 2019

\(\exists x\in R,x\le-2\Rightarrow x^2\le4\)

\(\exists x\in R,x\le2\Rightarrow x^2\le4\)

\(\exists x\in R,x^2\le4\Rightarrow x\le2\)

5 tháng 7 2019

Cậu giúp mình xác định tính đúng sai của mệnh đề này với nha

Lập mệnh đề phủ định của các mệnh đề sau:

a) \(\forall x\in R,x>-2\Rightarrow x^2>4\)

b) \(\forall x\in R,x>2\Rightarrow x^2>4\)

c) \(\forall x\in R,x^2>4\Rightarrow x>2\)

d) \(\forall x\in N,x>2\Leftrightarrow x^2>4\)

Cảm on nhiều ạ

15 tháng 4 2017

a) Có một số tự nhiên n không chia hết cho chính nó. Mệnh đề này đúng vì n=0 ∈ N, 0 không chia hết cho 0.

b) = "Bình phương của một số hữu tỉ là một số khác 2". Mệnh đề đúng.

c) = ∃x ∈ R: x≥x+1= "Tồn tại số thực x không nhỏ hơn số ấy cộng với 1". Mệnh đề này sai.

d) = ∀x ∈ R: 3x ≠ x2+1= "Tổng của 1 với bình phương của số thực x luôn luôn không bằng 3 lần số x"

Đây là mệnh đề sai vì với x= ta có :

3 =+1

NV
12 tháng 10 2019

\(\overline{P}:"\exists x\in R:x^2-x+3\le0"\)

Mệnh đề \(\overline{P}\) sai vì \(x^2-x+3=\left(x-\frac{1}{2}\right)^2+\frac{11}{4}>0\) \(\forall x\in R\)

9 tháng 9 2017

đề có sai o bn

đề phải là : xét tính đúng sai của mệnh đề và lập mệnh đề phủ định của nó.

nN; n2 + 1 không chia hết cho 4 mới đúng chứ .

5 tháng 9 2020

E mới c2 nên cg ch am hiểu lắm nên thôi lm đại nhé:))

Ta có: \(x^2+xy+y^2=\left(x^2+xy+\frac{1}{4}y^2\right)+\frac{3}{4}y^2\)

\(=\left(x+\frac{1}{2}y\right)^2+\frac{3}{4}y^2\ge0\left(\forall x,y\right)\)

Vì nếu \(x=y=0\) => \(x^2+xy+y^2=0\)

=> Mệnh đề sai 

Chỉ đúng ở phần không âm

18 tháng 9 2018

\(x^4=3x^2+4x+3\Leftrightarrow x^4-2x^2+1=x^2+4x+4\)

\(\Leftrightarrow\left(x^2-1\right)^2=\left(x+2\right)^2\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2-1=x+2\\x^2-1=-x-2\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2-x-3=0\\x^2+x+1=0\end{matrix}\right.\)

\(\Leftrightarrow x=\dfrac{1\pm\sqrt{13}}{2}\)

Vì vậy mệnh đề "\(\exists x\in\mathbb{R},x^4=3x^2+4x+3\)" là mệnh đề đúng.

23 tháng 8 2018

+) ta có : \(x^4=3x^2+4x+3\Leftrightarrow x^4-3x^2-4x-3=0\)

\(\Leftrightarrow x^4-x^3-3x^2+x^3-x^2-3x+x^2-x-3=0\)

\(\Leftrightarrow x^2\left(x^2-x-3\right)+x\left(x^2-x-3\right)+\left(x^2-x-3\right)=0\)

\(\Leftrightarrow\left(x^2+x+1\right)\left(x^2-x-3\right)=0\) \(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1-\sqrt{13}}{2}\\x=\dfrac{1+\sqrt{13}}{2}\end{matrix}\right.\)

\(\Rightarrow\exists x\in R,x^4=3x^2+4x+3\) \(\Rightarrow\) mệnh đề ở trên đúng

+) mệnh đề phủ định : \(\forall x\in R,x^4\ne3x^2+4x+3\)