K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 11 2016

\(f'\left(x\right)=e^x-c\)

\(f'\left(x\right)=0\Leftrightarrow e^x=c\Leftrightarrow x=ln\left(c\right)\)

Lập bảng biến thiên, ta thấy f(x) nghịch biến trên khoảng \(\left(-\infty;lnc\right)\) và đồng biến trên khoảng \(\left(lnc;+\infty\right)\)

Vậy min f(x)= f(lnc)

NV
17 tháng 4 2019

Không có khái niệm hàm số đơn điệu tại 1 điểm x hoặc y nào đó, nên bạn xem lại đề

AH
Akai Haruma
Giáo viên
4 tháng 7 2017

Lời giải:

Ta có \(F(x)=\int \sin xe^{\cos x}dx=-\int e^{\cos x}d(\cos x)\)

\(\Leftrightarrow F(x)=-e^{\cos x}+c\)

\(F(0)=e+c=e\Rightarrow c=0\)

\(\Rightarrow F(\pi)=-e^{\cos \pi}=\frac{-1}{e}\). Đáp án B

NV
11 tháng 3 2019

\(I=\int e^xcosxdx\Rightarrow\left\{{}\begin{matrix}u=cosx\\dv=e^xdx\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}du=-sinx.dx\\v=e^x\end{matrix}\right.\)

\(\Rightarrow I=e^xcosx+\int e^xsinx.dx=e^xcosx+I_1\)

\(I_1=\int e^xsinx\Rightarrow\left\{{}\begin{matrix}u=sinx\\dv=e^xdx\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}du=cosx.dx\\v=e^x\end{matrix}\right.\)

\(\Rightarrow I_1=e^xsinx-\int e^xcosx.dx=e^x.sinx-I\)

\(\Rightarrow I=e^xcosx+e^xsinx-I\Rightarrow2I=e^x\left(cosx+sinx\right)\)

\(\Rightarrow I=e^x\left(\frac{1}{2}cosx+\frac{1}{2}sinx\right)+C\Rightarrow\left\{{}\begin{matrix}A=\frac{1}{2}\\B=\frac{1}{2}\end{matrix}\right.\)

\(\Rightarrow A+B=1\)

NV
19 tháng 7 2020

Chọn \(f\left(x\right)=x^3+ax^2+bx+c\)

\(2f\left(x^2\right)+f'\left(x\right)=2x^6+7x^2+2\)

\(\Leftrightarrow2x^6+2ax^4+2bx^2+c+3x^2+2ax+b=2x^6+7x^2+2\)

\(\Leftrightarrow2ax^4+\left(2b+3\right)x^2+2ax+b+c=7x^2+2\)

Đồng nhất 2 vế ta được: \(\left\{{}\begin{matrix}a=0\\2b+3=7\\b+c=2\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=c=0\\b=2\end{matrix}\right.\)

\(\Rightarrow f\left(x\right)=x^3+2x\Rightarrow f\left(1\right)=3\)

AH
Akai Haruma
Giáo viên
26 tháng 6 2018

Hỏi đáp Toán

1) Cho hàm số f(x)= 3x- 3-x. Gọi m1; m2 là các giá trị thực của tham số m để f(3log2m)+ f(log22m +2)= 0. Tính T=m1.m2 2) Cho hàm số y= -x3+ 2(m+1)x2- 3(m2-1)x+ 2 có đồ thị (Cm). Gọi M là điểm thuộc đồ thị có hoành độ xM= 1. Có bao nhiêu giá trị thực của tham số m sao cho tiếp tuyến của (Cm) tại điểm M song song với đường thẳng y= -3x+ 4. 3) Số giá trị nguyên của tham số m để phương trình sinx+...
Đọc tiếp

1) Cho hàm số f(x)= 3x- 3-x. Gọi m1; m2 là các giá trị thực của tham số m để f(3log2m)+ f(log22m +2)= 0. Tính T=m1.m2

2) Cho hàm số y= -x3+ 2(m+1)x2- 3(m2-1)x+ 2 có đồ thị (Cm). Gọi M là điểm thuộc đồ thị có hoành độ xM= 1. Có bao nhiêu giá trị thực của tham số m sao cho tiếp tuyến của (Cm) tại điểm M song song với đường thẳng y= -3x+ 4.

3) Số giá trị nguyên của tham số m để phương trình sinx+ (m-1)cosx= 2m- 1 có nghiệm là ?

4) Giả sử z là các số phức thỏa mãn \(\left|1z-2-i\right|\)= 3. Giá trị lớn nhất của biểu thức 2\(\left|z-4-i\right|\)+\(\left|z+5+8i\right|\) bằng

5) Trong không gian Oxyz, cho mặt cầu (S): x2+ y2+ z2= 9 và mặt phẳng (P): 4x+ 2y+ 4z+7= 0. hai mặt cầu có bán kính R1 và R2 chứa đường giao tuyến của (S) và (P) đồng thời cùng tiếp xúc với mặt phẳng (Q): 3y- 4z- 20= 0. Tổng R1+ R2= ?

2
NV
18 tháng 5 2019

Câu 1:

Để dễ nhìn hơn, ta đặt \(log_2m=a\) phương trình trở thành:

\(3^{3a}-3^{-3a}+3^{a^2+2}-3^{-a^2-2}=0\)

\(\Leftrightarrow3^{3a}-3^{-3a}=3^{-a^2-2}-3^{-\left(-a^2-2\right)}\) (1)

Xét hàm \(f\left(t\right)=3^t-3^{-t}\Rightarrow f'\left(t\right)=3^t.ln3+3^{-t}.ln3>0\)

\(\Rightarrow f\left(t\right)\) đồng biến \(\Rightarrow\left(1\right)\) xảy ra khi và chỉ khi \(3a=-a^2-2\)

\(\Leftrightarrow a^2+3a+2=0\Leftrightarrow\left[{}\begin{matrix}a=-1\\a=-2\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}log_2m=-1\\log_2m=-2\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}m=\frac{1}{2}\\m=\frac{1}{4}\end{matrix}\right.\) \(\Rightarrow T=\frac{1}{8}\)

Câu 2:

\(x_M=1\Rightarrow y_M=-3m^2+2m+6\)

\(y'=-3x^2+4\left(m+1\right)x-3m^2+3\)

\(\Rightarrow y'\left(1\right)=-3m^2+4m+4\)

Phương trình tiếp tuyến tại M:

\(y=\left(-3m^2+4m+4\right)\left(x-1\right)-3m^2+2m+6\)

\(\Leftrightarrow y=\left(-3m^2+4m+4\right)x-2m+2\)

Để tiếp tuyến song song với d: \(\left\{{}\begin{matrix}-3m^2+4m+4=-3\\-2m+2\ne4\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}3m^2-4m-7=0\\m\ne-1\end{matrix}\right.\) \(\Rightarrow m=\frac{7}{3}\Rightarrow\) có đúng 1 giá trị m thỏa mãn

NV
19 tháng 5 2019

Câu 3:

Áp dụng điều kiện của nghiệm của pt lượng giác bậc nhất:

\(1^2+\left(m-1\right)^2\ge\left(2m-1\right)^2\)

\(\Leftrightarrow m^2-2m+2\ge4m^2-4m+1\)

\(\Leftrightarrow3m^2-2m-1\le0\)

\(\Rightarrow\frac{-1}{3}\le m\le1\Rightarrow m=\left\{0;1\right\}\) có 2 giá trị nguyên

Câu 4:

Sao lại là \(\left|1z-2-i\right|\), sự xuất hiện số 1 bất thường làm mình nghĩ bạn gõ nhầm chỗ nào đó, nhưng thực ra chỉ cần phương pháp giải, còn số liệu thì chỉ việc thay đổi thôi

Với dữ kiện để bài, ta thấy ngay tập hợp \(z\) là các điểm \(M\left(x;y\right)\) nằm trên đường tròn \(\left(x-2\right)^2+\left(y-1\right)^2=9\)

Gọi \(A\left(4;1\right)\)\(B\left(-5;-8\right)\)

\(\Rightarrow P=\left|z-4-i\right|+\left|z+5+8i\right|=MA+MB\)

Bài toán quy về tìm điểm M thuộc đường tròn cố định và 2 điểm A, B cố định sao cho \(MA+MB\) đạt max

Gọi H là trung điểm AB \(\Rightarrow H\left(-\frac{1}{2};-\frac{7}{2}\right)\)

Áp dụng BĐT Bunhiacôpxki ta có:

\(P=MA+MB\le\sqrt{2\left(MA^2+MB^2\right)}\)

Theo công thức trung tuyến trong tam giác MAB ta có:

\(MA^2+MB^2=2MH^2+\frac{AB^2}{2}\)

\(\Rightarrow P\le\sqrt{2\left(MH^2+\frac{AB^2}{2}\right)}\) (1)

AB cố định \(\Rightarrow P_{max}\) khi \(MH_{max}\Rightarrow M\) là giao điểm nằm khác phía H so với I của đường thẳng IH và đường tròn (C)

\(\overrightarrow{BA}=\left(9;9\right)=9\left(1;1\right)\Rightarrow\)phương trình đường thẳng IH:

\(x+\frac{1}{2}+y+\frac{7}{2}=0\Leftrightarrow x+y+4=0\)

Tọa độ M: \(\left\{{}\begin{matrix}\left(x-2\right)^2+\left(y-1\right)^2=9\\x+y+4=0\end{matrix}\right.\)

Số xấu, nghĩa là linh cảm đúng, pt ban đầu bạn viết nhầm :(

Đến đây chỉ việc giải ra tọa độ M, sau đó thay vào công thức (1) là xong

NV
22 tháng 4 2019

Thay toạ độ A; B vào (P) thấy ra kết quả cùng dấu, vậy A và B nằm cùng phía so với (P)

Gọi C là điểm đối xứng A qua (P) thì MA+MB nhỏ nhất khi và chỉ khi M trùng giao điểm của BC và (P)

Phương trình đường thẳng d qua A và vuông góc (P): \(\left\{{}\begin{matrix}x=2+t\\y=2t\\z=3+2t\end{matrix}\right.\)

Giao điểm D của d và (P) là nghiệm:

\(2+t+2\left(2t\right)+2\left(3+2t\right)+1=0\Rightarrow t=-1\Rightarrow D\left(1;-2;1\right)\)

\(\overrightarrow{AD}=\left(-1;-2;-2\right)\)\(\overrightarrow{AD}=\overrightarrow{DC}\Rightarrow C\left(0;-4;-1\right)\)

\(\overrightarrow{CB}=\left(3;3;6\right)\Rightarrow\overrightarrow{u_{BC}}=\left(1;1;2\right)\Rightarrow\) pt BC: \(\left\{{}\begin{matrix}x=3+t\\y=-1+t\\z=5+2t\end{matrix}\right.\)

Toạ độ M là nghiệm:

\(3+t+2\left(1-t\right)+2\left(5+2t\right)+1=0\Rightarrow t=-\frac{12}{7}\Rightarrow M\left(\frac{9}{7};-\frac{19}{7};\frac{11}{7}\right)\)

\(\Rightarrow T=\frac{563}{49}\)

23 tháng 4 2019

e cám ơn