K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 3 2016

a) Gọi \(z_1,z_2\) là các nghiệm của phương trình với \(\left|z_1\right|=1\). Từ \(z_2=\frac{c}{a}.\frac{1}{z_1}\) kéo theo \(\left|z_2\right|=\left|\frac{c}{a}\right|.\frac{1}{\left|z_1\right|}=1\)

vì \(z_1+z_2=-\frac{b}{a},\left|a\right|=\left|b\right|\), ta có \(\left|z_1+z_2\right|^2=1\)

Hệ thức tương đương với 

\(\left(z_1+z_2\right)\left(\overline{z_1}+\overline{z_2}\right)=1\) tức là \(\left(z_1+z_2\right)\left(\frac{1}{z_1}+\frac{1}{z_2}\right)=1\)

\(\left(z_1+z_2\right)^2=z_1z_2\)

hay  \(\left(-\frac{b}{a}\right)^2=\frac{c}{a}\Rightarrow b^2=ac\)

25 tháng 3 2016

b) Theo câu a) \(b^2=ac,c^2=ab\). Nhân các hệ thức được \(b^2c^2=a^2bc\Rightarrow a^2=bc\)

Do đó \(a^2+b^2+c^2=ab+bc+ca\)

Hệ tương đương  với :

\(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)

Tức là 

\(\left(a-b\right)^2+\left(b-c\right)^2+2\left(a-b\right)\left(b-c\right)+\left(c-a\right)^2=2\left(a-b\right)\left(b-c\right)\)

Kéo theo 

\(\left(a-c\right)^2=\left(a-b\right)\left(b-c\right)\)

Lấy giá trị tuyệt đối, được \(\beta^2=\gamma\alpha\)

Ở đây \(\alpha=\left|b-c\right|,\beta=\left|c-a\right|,\gamma=\left|a-b\right|\)

Tương tự được :

\(\alpha^2=\beta\gamma,\gamma^2=\alpha\beta,\)

Cộng các hệ thức, được :

\(\alpha^2+\beta^2+\gamma^2=\alpha\beta+\beta\gamma+\gamma\alpha\)

Tức là (\(\left(\alpha-\beta\right)^2+\left(\beta-\gamma\right)^2+\left(\gamma-\beta\right)^2=0\)

Do đó : \(\beta=\alpha=\gamma\)

8 tháng 12 2017

25 tháng 8 2019

Đáp án D

13 tháng 5 2018

Chọn A.

14 tháng 3 2019

Chọn B

24 tháng 11 2019

Đáp án D

20 tháng 11 2017

Chọn A.

Ta có : 

1 tháng 11 2017

Đáp án A

2 tháng 7 2019

Ta có: 

Chọn D