Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì tam giác ABC cân tại A
=> Góc ABC=ACB
=> AB=AC ( t/c tam giác cân) (1)
Mà AH=AK ( gt) (2)
Và AH+HC=AC; AK+KB=AB (3)
Từ (1)(2)(3) => HC = KB
Xét tam giác KBC và HCB có:
BC chung
Góc ABC=ACB ( chứng minh trên)
KB=HC ( chứng minh trên)
=> Tam giác KBC=HCB ( c.g.c )
=> Góc KCB=HBC
Hay tam giác OBC cân tại O
xin loi minh ko biet nha bn
xin loi minh ko biet nha bn
xin loi minh ko biet nha bn
\(a,\left\{{}\begin{matrix}AC=AH\left(GT\right)\\AB.chung\\\widehat{CAB}=\widehat{BAH}\left(=90^0\right)\end{matrix}\right.\Rightarrow\Delta ACB=\Delta AHB\left(c.g.c\right)\)
\(b,\left\{{}\begin{matrix}\widehat{ACB}=\widehat{CBK}\left(so.le.trong\right)\\\widehat{ABC}=\widehat{BCK}\left(so.le.trong\right)\\BC.chung\end{matrix}\right.\Rightarrow\Delta ABC=\Delta KCB\left(g.c.g\right)\Rightarrow AC=BK\left(2.cạnh.tương.ứng\right)\)
\(c,CH=AC+AH=2AC=2AB=BM\\ \left\{{}\begin{matrix}CK//AB\\AB\perp AC\end{matrix}\right.\Rightarrow CK\perp AC\Rightarrow\widehat{ACK}=90^0\\ \left\{{}\begin{matrix}BK//AC\\AC\perp AB\end{matrix}\right.\Rightarrow KB\perp AB\Rightarrow\widehat{ABK}=90^0\\ \left\{{}\begin{matrix}\widehat{ACK}=\widehat{ABK}\left(=90^0\right)\\CH=BM\left(cm.trên\right)\\AC=BK\left(cm.trên\right)\end{matrix}\right.\Rightarrow\Delta CHK=\Delta BMK\left(c.g.c\right)\)
\(d,\Delta CHK=\Delta BMK\left(cm.trên\right)\\ \Rightarrow\widehat{CKH}=\widehat{BKM}\Rightarrow\widehat{CKH}+\widehat{HKB}=\widehat{BKM}+\widehat{HKB}\\ \Rightarrow\widehat{CKB}=\widehat{HKM}\\ \Rightarrow\widehat{BAC}=\widehat{HKM}\left(\Delta ABC=\Delta KCB.nên.\widehat{CKB}=\widehat{BAC}\right)\\ \Rightarrow\widehat{HKM}=90^0\Rightarrow HK\perp KM\)
Có:
2 góc bằng nhau
2 cạnh bằng nhau
tia phân giác vuông với cạnh đáy
Tia phân giác đi qua trung điểm cạnh đáy