Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(7⋮\left(2n-3\right)\Leftrightarrow2n-3\inƯ\left(7\right)=\left\{-7,-1,1,7\right\}\)
\(\Leftrightarrow2n\in\left\{-4,2,4,10\right\}\Leftrightarrow n\in\left\{-2,1,2,5\right\}\).
mình xin lỗi mình đánh máy sai câu hỏi như này
A) n+7 chia hết cho n+2 ( với n khác 2 )
B) 3n+1 chia hết cho 2n+3
+ Nếu n chia hết cho 3 thì tích chia hết cho 3
+ Nếu n chia 3 dư 1 thì 2n chia 3 dư 2 => 2n+1 chia hết cho 3 => tích chia hết cho 3
+ nếu n chia 3 dư 2 => n+1 chia hết cho 3 => tích chia hết cho 3
=> tích chia hết cho 3 với mọi n
Ta có : n2 - 9n + 7 = n.n - 9n + 7 = n ( n - 9 ) + 7
Để n2 - 9n + 7 \(⋮\)n - 9
=> n ( n - 9 ) + 7 \(⋮\)n - 9
=> 7 \(⋮\)n - 9
=> n - 9 \(\in\)Ư( 7 ) = ( 1 ; 7 )
=> n \(\in\)( 10 ; 16 )
~ HỌC TỐT ~
a) n + 7 = n + 2 + 5 chia hết cho n + 2
=> 5 chia hết cho n + 2 thì n+7 chia hết cho n+2
=> n+2 thuộc tập cộng trừ 1, cộng trừ 5
kẻ bảng => n = -1; -3; 3; -7
b) n+1 là bội của n-5
=> n+1 chia hết cho n-5
=> n-5 + 6 chia hết cho n-5
=> Để n+1 chia hết cho n-5 thì 6 chia hết cho n-5
=> n-5 thuộc tập cộng trừ 1; 2; 3; 6
kẻ bảng => n = 6; 4; 7; 3; 8; 2; 11; -1
a)Ta có: (n+7)\(⋮\)(n+2)
\(\Rightarrow\) (n+2+5)\(⋮\)(n+2)
Mà: (n+2)\(⋮\) (n+2)
\(\Rightarrow\) 5\(⋮\)(n+2)
\(\Rightarrow\) n+2\(\in\) Ư(5)={1;-1;5;-5}
\(\Rightarrow\) n\(\in\){-1;-3;3;-7}
\(A=n^5-n=n\left(n^4-1\right)=n\left(n^2-1\right)\left(n^2+1\right)=n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)\\ \)
- Nếu n chia hết cho 5 thì A chia hết cho 5
- Nếu n chia 5 dư 1 thì (n-1) chia hết cho 5 => A chia hết cho 5
- Nếu n chia 5 dư 2 thì n = 5k +2 => n2 + 1 = 25k2 + 20k + 4 + 1 chia hết cho 5 => A chia hết cho 5
- Nếu n chia 5 dư 3 thì n = 5k +3 => n2 + 1 = 25k2 + 30k + 9 + 1 chia hết cho 5 => A chia hết cho 5
- Nếu n chia 5 dư 4 thì (n+1) chia hết cho 5 => A chia hết cho 5
n thuộc N lớn hơn hoặc bằng 2 chỉ có 5 trường hợp có số dư như trên khi chia cho 5. Nên A chia hết cho 5 với mọi n thuộc N lớn hơn hoặc bằng 2.
TL
n= {1; 7}
Khi nào rảnh vào kênh H-EDITOR xem vid nha!!! Thanks!