Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, n + 1 là ước của 20 => n + 1 \(\in\){ 1 , 2 , 4 , 5 , 10 , 20 }
=> n \(\in\){ 0 ; 1 ; 3 ; 4 ; 9 ; 19 }
b, n + 3 là ước của 15 => n + 3 \(\in\){ 1 ; 3 ; 5 ; 15 }
=> n \(\in\){ 0 ; 2 ; 12 }
c , 10 \(⋮\)x - 2 => x - 2 \(\in\){ 1 ; 2 ; 5 ; 10 }
x \(\in\){ 3 ; 5 ; 7 ; 12 }
d, 12 \(⋮\)2x + 1 . 2x + 1 là số lẻ =.> 2x + 1 \(\in\){ 3 ; 1 }
x \(\in\){ 1 ; 0 }
vì (n + 1) \(\in\) Ư(15)
mà Ư(15) = { - 15; -5; - 3; -1; 1; 3; 5; 15}
=> (n + 1) \(\in\) {-15; -5; -3;-1; 1; 3; 5; 15 }
vì n \(\in\) N nên ta có bảng các giá trị của n :
n +1 | -15 | -5 | -3 | -1 | 1 | 3 | 5 | 15 |
n | -16 | -6 | -4 | -2 | 0 | 2 | 4 | 14 |
nhận xét | loại | loại | loại | loại | chọn | chọn | chọn | chọn |
vậy với x \(\in\) {0; 2; 4; 14} thì n+ 1 là ước của 15
b/ vì n+ 5 \(\in\)Ư(12)
mà Ư(12) = {-12; -6; -4; -3; -2; -1; 1;2;3;4;6;12}
=> n + 5 \(\in\) {-12; -6; -4; -3; -2; -1; 1;2 ;3;4;6;12}
vì n \(\in\) N nên ta có bảng các giá trị của n :
n+5 | -12 | -6 | -4 | -3 | -2 | -1 | 1 | 2 | 3 | 4 | 6 | 12 |
n | -17 | -11 | -9 | -8 | -7 | -6 | -4 | -3 | -2 | -1 | 1 | 7 |
nhận xét | loại | loại | loại | loại | loại | loại | loại | loại | loại | loại | chọn | chọn |
vậy với x \(\in\) {1; 7} thì n+ 5 là Ư(12)
A.n+1 là ước của 15
suy ra:Ư(15)={1;3;5;15}
Vậy n={1;3;5;15}
x+20 la boi cua x+2
suy ra x+2+18 chia het cho x+2
suy ra 18 chia het cho x+2
x+2 la Ư(18)={1;2;3;6;9;18}
x+2=1 nen x=-1(loại)
x+2=2 nen x=0
x+2=3 nen x=1
x+2=6 nen x=4
x+2=9 nen x=7
x+2=18 nen x=16
Vây x thuộc {0;1;4;7;16}
tra lio ho cai dang can gap
n+2∈Ư(20)={1;2;4;5;10;20}
do đó: n+2=1=>n=1-2=-1(loại)
n+2=2=>n=2-2=0(chọn)
n+2=4=>n=4-2=2(chọn)
n+2=5=>n=5-2=3(chọn)
n+2=10=>n=10-2=8(chọn)
n+2=20=>n=20-2=18(chọn)
vậy n=0;2;3;8;18 thì n+2 chia hết cho 2