Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi ƯCLN(3n+1; 5n+4) là d. Ta có:
3n+1 chia hết cho d => 15n+5 chia hết cho d
5n+4 chia hết cho d => 15n+12 chia hết cho d
=> 15n+12-(15n+5) chia hết cho d
=> 7 chia hết cho d
=> d = 7
=> ƯCLN(3n+1; 5n+4) = 7
a)Ta có:\(4n+5⋮n\)
\(\Rightarrow5⋮n\)
\(\Rightarrow n\in1;5\)\(\Rightarrow n\inƯ\left(5\right)\)
\(\Rightarrow n=1;5\)
b)38-3n\(⋮n\)
\(\Rightarrow38⋮n\)
\(\Rightarrow n\inƯ\left(38\right)\)
c)\(3n+4⋮n-1\)
\(\Rightarrow3n-1+5⋮n-1\)
\(\Rightarrow5⋮n-1\)
\(\Rightarrow n-1\inƯ\left(5\right)\)
\(\Rightarrow n-1=1;5\)
\(\Rightarrow n\in2;6\)
d)\(2n+1⋮16-3n\)
Đặt d=ƯCLN(3n+1;5n+4)
=> (3n+1) chia hết cho d; (5n+4) chia hết cho d
=> (5n+4)-(3n+1) chia hết cho d
=> 3(5n+4)-5(3n+1) chia hết cho d
=>(15n+12)-(15n+5) chia hết cho d
=> 7 chia hết cho d
=> d thuộc {1;7}
=> d=7
Vậy WCLN(3n+1;5n+1)=7
Lưu ý bạn nên đổi chữ thuộc và chia hết thành dấu
có gì ko hiểu thì bạn hỏi mình nghe nếu mình đúng thì **** nha bạn
\(\frac{3n+4}{3n-1}=1+\frac{5}{3n-1}\)
Để 3n+4 chia hết cho 3n-1 thì 5 chia hết cho 3n-1 hay \(3n-1\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)
Ta có bảng:
3n-1 | -5 | -1 | 1 | 5 |
3n | -4 | 0 | 2 | 6 |
n | -4/3 | 0 | 2/3 | 2 |
Vì n thuộc N nên n=0;2
2n + 1 chia hết 3n - 5 => 3(2n + 1) chia hết cho 3n - 5 => 6n + 3 chia hết cho 3n - 5
Mặt khác 3n - 5 chia hết cho 3n - 5 => 2(3n - 5) chia hết cho 3n - 5 => 6n - 10 chia hết cho 3n - 5
=> (6n + 3) - (6n - 10) chia hết cho 3n - 5
=> 13 chia hết cho 3n - 5
=> 3n - 5 \(\in\)Ư(13) = {-1;1;-13;13}
Mà 3n - 5 chia 3 dư 1
=> 3n - 5 \(\in\){1;13}
=> 3n \(\in\){6;18}
=> n \(\in\){2;6}
Mình chỉ giúp bạn được những câu này thôi , mình phải đi ngủ , thông cảm ạ :
c ) 38 - 3n chia hết cho n .
Vì 3n chia hết cho n nên 38 chia hết cho n
Suy ra : n thuộc Ư (38) = { 1 ; 2 ; 19 ; 38 }
Vậy n thuộc { 1 ; 2 ; 19 ; 38 }
d ) n + 5 chia hết cho n + 1 .
\(\Rightarrow\)n + 1 + 4 chia hết cho n + 1 .
Mà : n + 1 chia hết cho n + 1 .
\(\Rightarrow\)4 chia hết cho n + 1 .
\(\Rightarrow\)n + 1 \(\in\)Ư (4) = { 1 ; 2 ; 4 }
Xét :
n + 1 = 1 \(\Rightarrow\)n = 0
n + 1 = 2 \(\Rightarrow\)n = 1
n + 1 = 4 \(\Rightarrow\)n = 3
Vậy n thuộc { 0 ; 1 ; 3 }
a, 4n + 5 ⋮ n ( n \(\in\) N*)
5 ⋮ n
n \(\in\)Ư(5) = {-5; -1; 1; 5}
Vì n \(\in\) N nên n \(\in\) {1; 5}
b, 38 - 3n ⋮ n (n \(\in\) N*)
38 ⋮ n
n \(\in\) Ư(38)
38 = 2.19
Ư(38) = {-38; -19; -2; -1; 1; 2; 19; 38}
Nì n \(\in\) N* nên n \(\in\) {1; 2; 19; 38}
c, 3n + 4 ⋮ n - 1 ( n \(\in\) N; n ≠ 1)
3(n - 1) + 7 ⋮ n - 1
7 ⋮ n -1
n - 1 \(\in\) Ư(7) = {-7; -1; 1; 7}
lập bảng ta có:
n - 1 | -7 | -1 | 1 | 7 |
n | -6 (loại) | 0 | 2 |
8 |
Theo bảng trên ta có n \(\in\) {0 ;2; 8}
b) ta có 3n+4 chia hết cho n-1
nên 3n+4 chia hết cho 3n+-3
3n+(-3)+7 chia hết cho 3n+-3
nên 7 chia hết cho 3n-3
do đó 3n-3=1 hoặc 7
Đề yêu cầu gì bạn nhỉ?
A = \(\dfrac{n+1}{3n+4}\)
a; Điều kiện để A là phân số: 3n + 4 ≠ 0
n ≠ \(\dfrac{-4}{3}\)
Vậy để A là phân số thì n ≠ \(\dfrac{-4}{3}\)
b; Để A là số nguyên thì
n + 1 ⋮ 3n + 4
3.(n + 1) ⋮ 3n + 4
3n + 3 ⋮ 3n + 4
3n + 4 - 1 ⋮ 3n + 4
1 ⋮ 3n + 4
3n + 4 \(\in\) Ư(1) = {-1; 1}
Lập bảng ta có:
Theo bảng trên ta có: n = -1
Kết luận: Để phân số \(\dfrac{n+1}{3n+4}\) là số nguyên thì n = -1