Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left|x+\frac{1}{2}\right|+\left|x+\frac{1}{6}\right|+\left|x+\frac{1}{12}\right|+...\left|x+\frac{1}{110}\right|=11x\)
\(\Leftrightarrow\left|x+\frac{1}{2}\right|+\left|x+\frac{1}{6}\right|+\left|x+\frac{1}{12}\right|+...\left|x+\frac{1}{110}\right|\ge0\)
\(\rightarrow11x\ge0\rightarrow x\ge0\)
\(\text{Ta có:}\)
\(x+\frac{1}{2}+...+x+\frac{1}{110}=11x\)
\(\rightarrow10x+\frac{10}{11}=11x\)
\(\rightarrow x=\frac{10}{11}\)
\(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{110}\)
\(=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{10.11}\)
\(=\frac{2-1}{1.2}+\frac{3-2}{2.3}+\frac{4-3}{3.4}+...+\frac{11-10}{10.11}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{10}-\frac{1}{11}\)
\(=1-\frac{1}{11}=\frac{10}{11}\)
Phương trình ban đầu tương đương với:
\(10x+\frac{10}{11}=11x\)
\(\Leftrightarrow x=\frac{10}{11}\)
\(\left|x+\frac{1}{2}\right|+\left|x+\frac{1}{6}\right|+\left|x+\frac{1}{12}\right|+...+\left|x+\frac{1}{110}\right|=11x\)
Với mọi x ta có:
+) \(\left\{{}\begin{matrix}\left|x+\frac{1}{2}\right|\ge0\\\left|x+\frac{1}{6}\right|\ge0\\.........\\\left|x+\frac{1}{110}\right|\ge0\end{matrix}\right.\)
\(\Rightarrow\left|x+\frac{1}{2}\right|+\left|x+\frac{1}{6}\right|+...+\left|x+\frac{1}{110}\right|\ge0\) \(\forall x.\)
Mà \(\left|x+\frac{1}{2}\right|+\left|x+\frac{1}{6}\right|+...+\left|x+\frac{1}{110}\right|=11x\)
\(\Rightarrow11x\ge0\)
\(\Rightarrow x\ge0.\)
Với \(x\ge0\) thì:
\(\left\{{}\begin{matrix}\left|x+\frac{1}{2}\right|=x+\frac{1}{2}\\\left|x+\frac{1}{6}\right|=x+\frac{1}{6}\\..........\\\left|x+\frac{1}{110}\right|=x+\frac{1}{110}\end{matrix}\right.\)
\(\Rightarrow x+\frac{1}{2}+x+\frac{1}{6}+...+x+\frac{1}{110}=11x\)
\(\Rightarrow11x+\left(\frac{1}{2}+\frac{1}{6}+...+\frac{1}{110}\right)=11x\)
\(\Rightarrow\left(\frac{1}{2}+\frac{1}{6}+...+\frac{1}{110}\right)=11x-11x\)
\(\Rightarrow\frac{1}{2}+\frac{1}{6}+...+\frac{1}{110}=0x\) (vô lí).
\(\Rightarrow x\in\varnothing.\)
Vậy không tồn tại giá trị của x thỏa mãn yêu cầu đề bài.
Chúc bạn học tốt!
mình sửa đề chút nhé + \(\left|x+\frac{1}{110}\right|=11x\)
Ta có: \(\left|x+\frac{1}{2}\right|\ge0;\left|x+\frac{1}{6}\right|\ge0;\left|x+\frac{1}{12}\right|\ge0;...;\left|x+\frac{1}{110}\right|\ge0\)
=> VT \(\ge\)0
=>VP \(\ge\)0 => 11x \(\ge\)0 => x \(\ge\)0.
=> \(\left|x+\frac{1}{2}\right|=x+\frac{1}{2};\left|x+\frac{1}{6}\right|=x+\frac{1}{6};\left|x+\frac{1}{12}\right|=x+\frac{1}{12};...;\left|x+\frac{1}{110}\right|=x+\frac{1}{110}\)
Phương trình <=> \(x+\frac{1}{2}+x+\frac{1}{6}+x+\frac{1}{12}+...+x+\frac{1}{110}=11x\)
<=> \(\left(x+x+x+...+x\right)+\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{10.11}\right)=11x\)
<=> \(10x+\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{10}-\frac{1}{11}\right)=11x\)
<=> \(1-\frac{1}{11}=11x-10x\)
<=> \(\frac{10}{11}=x\)
<=> \(x=\frac{10}{11}\left(tm\right)\)
Bởi vì
\(\frac{1}{2}=\frac{1}{1.2};\frac{1}{6}=\frac{1}{2.3};...;\frac{1}{110}=\frac{1}{10.11}\)
nên từ \(\frac{1}{2}\)đến \(\frac{1}{110}\)chỉ có 10 số
nên chỉ có 10 x
a) P(x) = x2 + x4 + x6 + x8 + ... + x100
P(-1) = (-1)2 + (-1)4 + (-1)6 + (-1)8 + ... + (-1)100
P(-1) = 1 + 1 + 1 + 1 + ... + 1
P(-1) = 1 . 50
P(-1) = 50
b) Q(x) = x + x3 + x5 + x7 + ... + x111
Q(-1) = (-1) + (-1)3 + (-1)5 + (-1)7 + ... + (-1)111
Q(-1) = (-1) + (-1) + (-1) + (-1) + ... + (-1)
Q(-1) = (-1) . 56
Q(-1) = -56
Với \(\forall x\) ta có :
+) \(\left|x+\dfrac{1}{2}\right|\ge0\)
+) \(\left|x+\dfrac{1}{6}\right|\ge0\)
..........................
+) \(\left|x+\dfrac{1}{110}\right|\ge0\)
\(\Leftrightarrow\left|x+\dfrac{1}{2}\right|+\left|x+\dfrac{1}{6}\right|+.........+\left|x+\dfrac{1}{110}\right|\ge0\)
Mà \(\left|x+\dfrac{1}{2}\right|+\left|x+\dfrac{1}{6}\right|+........+\left|x+\dfrac{1}{110}\right|=11x\)
\(\Leftrightarrow11x\ge0\)
\(\Leftrightarrow x\ge0\)
Với \(x\ge0\) thì :
+) \(\left|x+\dfrac{1}{2}\right|=x+\dfrac{1}{2}\)
+) \(\left|x+\dfrac{1}{6}\right|=x+\dfrac{1}{6}\)
.....................................
+) \(\left|x+\dfrac{1}{110}\right|=x+\dfrac{1}{110}\)
\(\Leftrightarrow x+\dfrac{1}{2}+x+\dfrac{1}{6}+......+x+\dfrac{1}{110}=11x\)
\(\Leftrightarrow11x+\left(\dfrac{1}{2}+\dfrac{1}{6}+........+\dfrac{1}{110}\right)=11x\)
\(\Leftrightarrow0x=\dfrac{1}{2}+\dfrac{1}{6}+....+\dfrac{1}{110}\) (vô lí)
\(\Leftrightarrow x\in\varnothing\)
\(\frac{20170}{11}\)
N= 2017.(1/2 +1/6 +...+1/110)
Ta thấy 1/2 +1/6 +...+1/110= 1/(1.2) + 1/(2.3) +...+ 1/(10.11)
= 1 - 1/2 + 1/2 -1/3 + ...+ 1/10 -1/11
= 1 - 1/11 =10/11
Suy ra N = 2017 .10/11