K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 11 2016

Giải :

Vì n thuộc N và n > 1

Ta có : n( n + 1 ) ( n + 2 ) = n ( n2- 1 ) = n2 . n - 1 . n = n3 - n

=) n3 - n = n( n + 1 ) ( n + 2 ) : hết cho 6 với mọi n thuộc N và n > 1 thì n( n + 1 ) ( n + 2 ) là tích của ba số tự nhiên liên tiếp

Do đó n( n + 1 ) ( n + 2 ) : hết cho 6 với mọi n thuộc N và n > 1

Vậy với n thuộc N , n > 1 thì n( n + 1 ) ( n + 2 ) : hết cho 6

26 tháng 12 2015

Ta xét theo 2 trường hợp của n: 

 - Chia hết cho 2

+ Nếu n chẵn =>n sẽ chia hết cho 2 

=>n.(n+1).(n+2) sẽ chia hết cho 2

+Nếu n lẻ =>n+1 sẽ chẵn và n+1 chia hết cho 2

=>n.(n+1).(n+2) sẽ chia hết cho 2

- Chia hết cho 3

+ Nếu n =3a=>n chia het cho 3=>n.(n+1).(n+2) chia hết cho 3

+Nếu n=3k+1 => n+2 sẽ chia hết cho 3 => n.(n+1).(n+2) chia hết cho 3

+Nếu n=3k+2=> n+1 chia hết cho 3=> n.(n+1).(n+2) chia hết cho 3

Từ đó suy ra, n.(n+1).(n+2) chia hết cho cả 2 và 3 , mà đã chia hết cho 2 và 3 sẽ chia hết cho 6. 

Kết luận...

tick nha

3 tháng 8 2017

Ta thấy n.(n+1) là 2 số tự nhiên liên tiếp => n.(n+1)\(⋮\)2

        n.(n+1).(n+2) là 3 số tự nhiên liên tiếp=> n.(n+1).(n+2)\(⋮\)​3

=> n.(n+1).(n+2) chia hết cho 6 

2 tháng 9 2016

Anh làm phần a,b em tự mày mò nhé.

a)Ta có:

n và n+1 là 2 số tự nhiên liên tiếp khác tính chẵn lẻ nên 1 số là chẵn:

=>(n+1)n(n+2) chia hết cho 2.

n;n+1;n+2 là 3 só tự nhiên liên tiếp nên 1 số chia hết cho 3(chứng minh bằng dùng 3k;3k+1;3k+2)

=>n(n+1)(n+2) chia hết cho 3.

Vậy ....

2 tháng 9 2016

Anh làm phần a,b em tự mày mò nhé.

a)Ta có:

n và n+1 là 2 số tự nhiên liên tiếp khác tính chẵn lẻ nên 1 số là chẵn:

=>(n+1)n(n+2) chia hết cho 2.

n;n+1;n+2 là 3 só tự nhiên liên tiếp nên 1 số chia hết cho 3(chứng minh bằng dùng 3k;3k+1;3k+2)

=>n(n+1)(n+2) chia hết cho 3.

Vậy ....

1 tháng 11 2016

9^2n=(9^2)^n=81^n

Vì 81^n-1 có tận cùng = 0 nên sẽ chia hết cho 2

8 tháng 11 2017

9^2n=(9^2)^n=81^n

vì 81^n-1 có tận cùng bằng 0 nên sẽ chia hết cho 2