Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
mink có câu trả lời rùi
có ai có nhu cầu cần trả lời thì nói mink nha
Giải thích các bước giải:
*đối với người đi từ M đến N
thời gian người đó đi hết nửa quãng đường đầu là
T1=0.5S/v1 =S/40 (h)
thời gian người đó đi hết nửa quãng đường còn lại là
T2=0.5S/V2=S/120 (h)
*Đối với người đi từ N đến M
quãng đường người đó đi được trong nửa giờ đầu là
S1'=0.5t'.v1=10t'(km)
Quãng đường người đó đi trong nửa giờ au là
S2'= 0.5t'.v2=30t'
Mà S1'+S2'=S
10t'+30t'=S
t'=S/40(h)
Vì nếu xe xuất phát từ N đi muộn hơn xe đi từ M 0.5h thì hai xe gặp nhau cùng một lúc nên ta có
T1+T2 =t'+0.5
S/40+s/120=s/40+0.5
S=60(km )
Đổi 20m/s = 72km/h
Ta có Vtb = \(\frac{S}{t_1+t_2}=\frac{S}{\frac{S}{2.v_1}+\frac{S}{2.v_2}}=\frac{S}{\frac{S}{2}\left(\frac{1}{v_1}+\frac{1}{v_2}\right)}=\frac{1}{\frac{1}{2}\left(\frac{v_1+v_2}{v_1.v_2}\right)}=\frac{2.v_1.v_2}{v_1+v_2}=\frac{2.50.72}{50+72}=59,01\)km/h
Thời gian đi trên nửa đoạn đường đầu là:
\(t_1=\dfrac{AB}{2v_1}=\dfrac{AB}{2.50}=\dfrac{AB}{100}\left(h\right)\)
Thời gian đu trên nửa đoạn đường sau là:
\(t_2=\dfrac{AB}{2v_2}=\dfrac{AB}{2.20}=\dfrac{AB}{40}\left(h\right)\)
Vận tốc trung bình trên cả quãng đường AB là:
\(v_{tb}=\dfrac{s_1+s_2}{t_1+t_2}=\dfrac{AB}{\dfrac{AB}{100}+\dfrac{AB}{40}}=\dfrac{AB}{AB\left(\dfrac{1}{100}+\dfrac{1}{40}\right)}=\dfrac{1}{\dfrac{1}{100}+\dfrac{1}{40}}=\dfrac{200}{7}\approx28,57\left(km/h\right)\)
mÌNH MỎI TAY QUÁ
Lấy gốc tọa độ tại AA chiều dương là chiều từ AA đến BB. Gốc thời gian là lúc 7h7h
Phương trình chuyển động của :
Xe đi từ A:A: xA=36t(km−h)xA=36t(km−h)
Xe đi từ B:xB=96−28t(km−h)B:xB=96−28t(km−h)
Hai xe gặp nhau khi :xA=xB:xA=xB
→36t=96−28t→36t=96−28t
⇒t=1,5(h)⇒t=1,5(h)
xA=36t=36.1,5=54(km)xA=36t=36.1,5=54(km)
Hai xe gặp nhau lúc 8h30′8h30′. Nơi gặp nhau cách AA 54km54km
TH1:TH1: Hai xe cách nhau 24km24km trước khi hai xe gặp nhau
Hai xe cách nhau 24km
⇔⇔ xB−xA=24xB−xA=24
⇔⇔ 96−28t′−36t′=2496−28t′−36t′=24
⇔t′=1,125h⇔t′=1,125h
Vậy lúc 8h7phút30giây hai xe cách nhau 24km
TH2:TH2: Hai xe cách nhau 24k sau khi gặp nhau
Hai xe cách nhau 24km
⇔xA−xB=24⇔xA−xB=24
⇔36t′′−96+28t′′=24⇔36t″−96+28t″=24
⇔t′′=1,875(h)⇔t″=1,875(h)
Vậy lúc 8h52phút30giây hai xe cách nhau 24km
bài 2:
ta có:
thời gian người đó đi trên nửa quãng đường đầu là:
t1=S1/v1=S/2v1=S/24
thời gian người đó đi hết nửa đoạn quãng đường cuối là:
t2=S2/v2=S2/v2=S/40
vận tốc trung bình của người đó là:
vtb=S/t1+t2=S/(S/40+S/24)=S/S(140+124)=1/(1/24+1/40)
⇒vtb=15⇒vtb=15 km/h
bài 3:
thời gian đi nửa quãng đầu t1=(1/2) S.1/25=S/50
nửa quãng sau (1/2) t2.18+(1/2) t2.12=(1/2) S⇔t2=S/30
vận tốc trung bình vtb=S/(t1+t2)=S/S.(1/50+1/30)=1/(1/50+1/30)=18,75(km/h)
HT
\(20\)m/s=72km/h
\(v_{tb}=\dfrac{S_1+S_2}{t_1+t_2}=\dfrac{60\cdot\dfrac{30}{60}+144}{\dfrac{30}{60}+\dfrac{144}{72}}=69,6\)km/h
a, Thời gian đi xe máy từ A là
\(t=t_1+t_2=\dfrac{s_1}{v_1}+\dfrac{s_2}{v_2}=\dfrac{AB}{2v_1}=\dfrac{AB}{2v_2}=\dfrac{AB}{30}\)
Thời gian xe ô tô đi từ B:
\(AB=v_1.\dfrac{t}{2}+v_2.\dfrac{t}{2}=t\left(\dfrac{v_1}{2}+\dfrac{v_2}{2}\right)=40t\\ \Rightarrow30t_{xe.máy}=49t_{xe.ô.tô}\\ \Rightarrow t_{xm}=\dfrac{4}{3}t_{xôt}\)
Mà
\(t_{xm}=t_{xôt}+0,5\left(30'=0,5h\right)\\ \Rightarrow\left\{{}\begin{matrix}t_{xôt}=1,5\left(h\right)\\t_{xm}=2\left(h\right)\end{matrix}\right.\\ \Rightarrow AB=60km\\ \Rightarrow\left\{{}\begin{matrix}v_{xm}=30\left(km/h\right)\\v_{xôt}=40\left(kmh/\right)\end{matrix}\right.\)
b, Xét thời gian 2 xe đổi \(v\)
\(t_{xôt}=\dfrac{t_{xm}}{2}=0,75\left(h\right)\\ t_{xm}=\dfrac{AB}{2v_1}=1,5\left(h\right)\)
Xe ô tô đổi vận tốc trước :
\(t=0,75\left(h\right)\)
2 xe còn cách nhau :
\(=69-2v_1.0,75=30\left(km\right)\)
Từ t = 0,75(h)
\(\rightarrow Xe.ô.tô.đi.với.v_2,xe.máy.vẫn.v_1\)
2 xe gặp nhau sau :
\(t=\dfrac{30}{\left(v_1+v_2\right)}=0,5\left(h\right)\)
Xe máy đi thêm được \(0,5.v_1=10\left(km\right)\)
Điểm gặp nhau cách A số km là
\(15+10=25\left(km\right)\)