Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi độ dài quãng đường AB là x
Theo đề, ta có: \(\dfrac{x}{35}=\dfrac{\dfrac{x}{2}}{35}+\dfrac{1}{4}+\dfrac{\dfrac{x}{2}}{40}\)
=>1/35x-1/70x-1/80x=1/4
=>x=2240
Bài 2:
Gọi độ dài quãng đường AB là \(x\left(km\right),x>0\).
Thời gian xe tải đi từ A đến B là: \(\frac{x}{30}\left(h\right)\).
Thời gian xe con đi từ A đến B là: \(\frac{\frac{3}{4}x}{45}+\frac{\frac{1}{4}x}{50}=\frac{13x}{600}\left(h\right)\)
Đổi: \(2h20'=\frac{7}{3}h\).
Ta có phương trình: \(\frac{x}{30}-\frac{13x}{600}=\frac{7}{3}\)
\(\Leftrightarrow x=200\)(thỏa mãn)
Gọi độ dài quãng đường AB là \(x\left(km\right),x>0\).
Đổi: nửa giờ \(=\)\(0,5h\), \(40'=\frac{2}{3}h\).
Thời gian xe con đi từ A đến B là: \(\frac{x}{60}+\frac{2}{3}\left(h\right)\).
Thời gian xe tải đi từ A đến B là: \(\frac{\frac{x}{2}}{40}+\frac{\frac{x}{2}}{50}=\frac{9x}{400}\left(h\right)\).
Ta có: \(\frac{9x}{400}-\left(\frac{x}{60}+\frac{2}{3}\right)=\frac{1}{2}\)
\(\Leftrightarrow x=200\)(thỏa mãn)
Gọi vận tốc của ô tô là x , thời gian dự định là y ( x(km/h), y(giờ) ; x, y > 0 )
S ban đầu = xy
Tăng vận tốc thêm 10km/h thì đến sớm hơn dự định 2 giờ
=> S = ( x + 10 )( y - 2 )
Giảm vận tộc đi 10km/h thì đến chậm hơn dự định 3 giờ
=> S = ( x - 10 )( y + 3 )
Vì quãng đường AB không đổi
=> Từ ( 1 ) và ( 2 ) ta có phương trình :
\(\hept{\begin{cases}\left(x+10\right)\left(y-2\right)=xy\\\left(x-10\right)\left(y+3\right)=xy\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}xy-2x+10y-xy-20=0\\xy+3x-10y-xy-30=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}-2x+10y-20=0\left(3\right)\\3x-10y-30=0\left(4\right)\end{cases}}\)
Lấy ( 3 ) cộng ( 4 ) theo vế
\(\Rightarrow x-50=0\Leftrightarrow x=50\)
Thế x = 50 vào ( 3 )
\(\Rightarrow-2\cdot50+10y-20=0\)
\(\Rightarrow-120+10y=0\)
\(\Rightarrow10y=1200\Leftrightarrow y=12\)
Cả hai giá trị đều thỏa mãn điều kiện
=> ( x ; y ) = ( 50 ; 12 )
Vậy vận tốc ban đầu của ô tô = 50km/h và thời gian dự định = 12 giờ
=> Quãng đường AB dài : 50 . 12 = 600km
Trả lời:
Gọi vân tốc dự định của ô tô là:\(x\)\(\left(km/h,x>10\right)\)
thời gian dự định ô tô đi quãng đường AB là \(y\) \(\left(giờ,y>2\right)\)
Độ dài quãng đường AB là \(xy\left(km\right)\)
.Nếu tăng vận tốc thêm 10km/h thì đến B sớm hơn dự định 2 giờ
\(\Rightarrow\left(x+10\right).\left(y-2\right)=xy\)
\(\Leftrightarrow xy-2x+10y-20=xy\)
\(\Leftrightarrow-2x+10y=20\)(1)
Nếu giảm vận tốc 10km/h thì đến B chậm hơn dự định 3 giờ
\(\Rightarrow\left(x-10\right).\left(y+3\right)=xy\)
\(\Leftrightarrow xy+3x-10y-30=xy\)
\(\Leftrightarrow3x-10y=30\)(2)
Từ (1) (2) ta có: \(\hept{\begin{cases}-2x+10y=20\\3x-10y=30\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=50\left(TM\right)\\3.50-10y=30\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=50\left(TM\right)\\150-10y=30\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=50\left(TM\right)\\10y=120\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=50\left(TM\right)\\y=12\left(TM\right)\end{cases}}\)
Vậy quãng đường AB dài: \(50\times12=600\left(km\right)\)
Gọi \(s\left(km\right)\) là quãng đường AB \(\left(s>0\right)\)
Thời gian người đó dự định đi: \(\dfrac{s}{40}\left(h\right)\)
Thời gian người đó đi khi tăng thêm 5km/h: \(\dfrac{s}{40+5}=\dfrac{s}{45}\left(h\right)\)
Do thời gian sau khi tăng tốc sẽ sớm hơn thời gian dự định \(10p=\dfrac{1}{6}h\) nên ta có phương trình:
\(\dfrac{s}{40}-\dfrac{s}{45}=\dfrac{1}{6}\)
\(\Leftrightarrow\dfrac{9s}{360}-\dfrac{8s}{360}=\dfrac{1}{6}\)
\(\Leftrightarrow\dfrac{s}{360}=\dfrac{1}{6}\)
\(\Leftrightarrow s=\dfrac{360}{6}=60\left(km\right)\)
Vậy quãng đường AB dài 60km
Gọi x (km) là độ dài quãng đường AB (x > 40)
Thời gian dự định đi: x/40 (h)
Quãng đường đi 1h đầu: 40 (km)
Quãng đường còn lại: x - 40
Thời gian đi hết quãng đường còn lại: (x - 40)/45 (giờ)
Đổi 10 phút = 1/6 (h)
Theo đề bài ta có phương trình:
1 + (x - 40)/45 + 1/6 = x/40
360 + 8(x - 40) + 60 = 9x
360 + 8x - 320 + 60 = 9x
9x - 8x = 360 - 320 + 60
x = 100 (nhận)
Vậy quãng đường AB dài 100 km