K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 2 2021

bài này đã cho bạn cái sườn hồi tối rồi :D xin phép giải vắn tắt nhất 

\(p_2=\sqrt{p^2+p_1^2-2.p.p_1.\cos\left(45^0\right)}\) \(=\sqrt{\left(mv\right)^2+\left(m1v1\right)^2-2mv\left(m1v1\right)\dfrac{\sqrt{2}}{2}}\) 

\(\Rightarrow p_2=m_2v_2\simeq999,14\left(kg.m/s\right)\)\(\Rightarrow v_2=\dfrac{p_2}{m_2}\simeq999,14\left(m/s\right)\) :D 

\(\cos\beta=\dfrac{p_2^2+p^2-p_1^2}{2p_2p}\) thay số nốt :D 

mọi thắc mắc truy cập: 

https://hoc24.vn/cau-hoi/mot-vien-dan-co-khoi-luong-3kg-bay-len-theo-phuong-thang-dung-voi-v-471ms-thino-thanh-2-manh-manh-1-co-khoi-luong-3kg-van-toc-overrightarrowv-1-chech-theo-phuong-thang-dung-1-goc-450-voi-d.334563063787

 

30 tháng 1 2021

Gọi \(\overrightarrow{v};\overrightarrow{v_1};\overrightarrow{v_2}\) lần lượt là vận tốc của viên đạn ban đầu, của mảnh đạn 1kg và mảnh đạn 2kg sau khi bắn

Động lượng ban đầu của viên đạn là

\(\overrightarrow{p_0}=3\overrightarrow{v}\)

Động lượng sau của hệ là

\(\overrightarrow{p_s}=\overrightarrow{v_1}+2\overrightarrow{v_2}\)

Do động lượng được bảo toàn nên

\(\overrightarrow{p_0}=\overrightarrow{p_s}\) ⇒ \(3\overrightarrow{v}=\overrightarrow{v_1}+2\overrightarrow{v_2}\)

⇒ \(\overrightarrow{v_1}=3\overrightarrow{v}-2\overrightarrow{v_2}\)

⇒ v12 = 9.v2 + 4v22 - 12 . v . v2 . cos (45)

⇒ v12 = 9 . 472 + 4.502 - 12 . 47 . 50 . \(\dfrac{\sqrt{2}}{2}\)

⇒ v1 = 99,7 (m/s)

\(3\overrightarrow{v}=\overrightarrow{v_1}+2\overrightarrow{v_2}\) 

⇒ \(2\overrightarrow{v_2}=3\overrightarrow{v}-\overrightarrow{v_1}\)

⇒ cos \(\left(\overrightarrow{v};\overrightarrow{v_1}\right)\) = 0.789

⇒ \(\left(\overrightarrow{v};\overrightarrow{v_1}\right)\) = 37054'

Vậy mảnh đạn 1 bay theo chiều dương và hợp với phương thẳng đứng 1 góc 37054có độ lớn là 99,7 m/s

 

30 tháng 1 2021

Không có câu hỏi tình cgi hả bạn ?

15 tháng 2 2021

sao m=m1=3kg thế kia khác gì nó không nổ không??? :D xem lại đề bài rồi dựa vào cách làm mình nhá

Áp dụng định lý hàm cos trong tam giác ta có: 

\(p_2^2=p^2+p_1^2-2p.p_1.\cos\left(45^0\right)\)

\(\Leftrightarrow p_2=\sqrt{p^2+p_1^2-2p.p_1\cos\left(45^0\right)}=\sqrt{\left(m.v\right)^2+\left(m_1.v1\right)^2-2mv\left(m_1v_1\right)\dfrac{\sqrt{2}}{2}}=......\) từ đó suy ra được \(v_2=\dfrac{p_2}{m_2}=.......\left(m/s\right)\)

Áp dụng hệ quả định lý hàm cos: gọi \(\beta\) là góc hợp bởi mảnh thứ 2 với phương thẳng đứng.

\(\cos\beta=\dfrac{p_2^2+p^2-p_1^2}{2p_2p}=......\) 

 

30 tháng 3 2023

phương thẳng đứng vận tốc là 2.250-250.cos(60)=375

 

27 tháng 11 2018

Khi đạn nổ bỏ qua sức cản của không khí nên được coi như là một hệ kín.

Theo định luật bảo toàn động lượng:  p → = p → 1 + p → 2

+ Với  p = m v = 2.250 = 500 k g . m / s p 1 = m 1 v 1 = 1.500 = 500 k g . m / s p 2 = m 2 v 2 = v 2 k g . m / s

+ Vì v → 1 ⊥ v → 2 ⇒ p → 1 ⊥ p →  theo pitago

⇒ p 2 2 = p 1 2 + p 2 ⇒ p 2 = p 1 2 + p 2 = 500 2 + 500 2 = 500 2   k g m / s

+ Mà  sin α = p 1 p 2 = 500 500 2 = 2 2 ⇒ α = 45 0

Vậy mảnh hai chuyển động theo phương hợp với phương thẳng đứng một góc  45 ° với vận tốc 500 2 m / s (m/s)

Chọn đáp án A

23 tháng 2 2022

undefined

a)Vận tốc viên đạn trước khi nổ:

   \(tan45^o=\dfrac{p}{p_1}=\dfrac{m\cdot v}{m_1\cdot v_1}=\dfrac{2\cdot v}{0,5\cdot400}\)

   \(\Rightarrow v=100\)m/s

   Vận tốc mảnh đạn lớn:

   \(sin45^o=\dfrac{p_1}{p_2}=\dfrac{m_1\cdot v_1}{m_2\cdot v_2}=\dfrac{0,5\cdot400}{\left(2-0,5\right)\cdot v_2}\)

   \(\Rightarrow v_2=188,56\)m/s

23 tháng 2 2022

cho em xin đáp án câu b với ạ

em cảm ơn!

24 tháng 3 2022

Bảo toàn động lượng: \(\overrightarrow{p_1}+\overrightarrow{p_2}=\overrightarrow{p}\)

\(p_1=m_1v_1=1\cdot100=100kg.m\)/s

\(p=\left(m_1+m_2\right)\cdot V=\left(1+3\right)\cdot200=800kg.m\)/s

Động lượng mảnh thứ hai:

\(p_2=p-p_1=800-100=700kg.m\)/s

Vận tốc mảnh nhỏ:

\(v_2=\dfrac{p_2}{m_2}=\dfrac{700}{3}=233,33\)m/s

22 tháng 1 2022

undefined

Bảo toàn động lượng ta có:

\(\overrightarrow{p}=\overrightarrow{p_1}+\overrightarrow{p_2}\)

\(\Rightarrow p^2=p_1^2+p_2^2+2\cdot p_1\cdot p_2\cdot cos\left(\overrightarrow{p_1;}\overrightarrow{p_2}\right)\) (1)

Có \(p=m\cdot v=2\cdot250=500\)kg.m/s

     \(p_1=m_1\cdot v_1=1\cdot250=250kg.\)m/s

\(\left(1\right)\Rightarrow500^2=250^2+p_2^2+2\cdot250\cdot p_2\cdot cos60^o\)

     \(\Rightarrow187500=p_2^2+250p_2\)

     \(\Rightarrow\left[{}\begin{matrix}p_2\approx325,7\\p_2\approx-575,7\left(loại\right)\end{matrix}\right.\)

Theo hình ta có:

\(p_1\cdot cos\alpha=p_2\cdot sin\beta\)

\(\Rightarrow sin\beta=\dfrac{p_1\cdot cos\alpha}{p_2}=\dfrac{250\cdot cos\left(90-30\right)}{325,7}=0,38\)

\(\Rightarrow\beta\approx22,57^o\)

Mảnh thứ hai bay theo góc \(22,57^o\)

22 tháng 1 2022

Refer:

\(m=2kg,v=250m/s,v_1=250m/s,α=60^o \)

Động lượng của viên đạn ban đầu:

\(p=m.v=2.250=500kg.m/s\)Động lượng của các mảnh :

\(p_1=m_1.v_1=\dfrac{2}{2}.250=250(kg.m/s)\)

\(p_2=m_2.v_2=\dfrac{2}{2}.v_2=v_2(kg.m/s)\)

theo quy tắc hình bình hành ta có:

\(p_2=\sqrt{p_2+p^2_1+2.p.p_1.cosα}\)

\(=\sqrt{500^2+250^2+2.500.250.cos60}\)

\(=661,4(kg.m/s)\)

Vận tốc của mảnh 2:

\(p_2=v_2\Rightarrow v_2=661,4m/s\)Bay theo phương hợp với phương thẳng đứng: 

\(\dfrac{P}{sin α}=\dfrac{P_1}{sin β} \)

\(\Rightarrow sinβ=\dfrac{sin60.250}{500}=\dfrac{\sqrt{3}}{4} \)

\(\Rightarrow β=25^o39' \)

undefined

 

22 tháng 1 2022

dạng này mình mới làm xong một bài nhé, bạn có thể lướt xuống tham khảo rồi áp dụng, không nên đăng cùng một loại câu hỏi nhiều lần