\(v_{max}\). Tần số góc của v...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

O
ongtho
Giáo viên
5 tháng 10 2015

Áp dụng công thức độc lập: \(A^2 = x^2 +\frac{v^2}{\omega ^2} \Rightarrow v=\omega\sqrt{A^2-x^2} = \frac{2\pi}{T}\sqrt{A^2-(\frac{A}{2})^2} = \frac{\sqrt{3} \pi A}{T} \)

30 tháng 1 2016

R=100 ôm mới ra ạ

31 tháng 8 2015

Tốc độ trung bình trong một chu kì: \(v_{tb} = \frac{S}{t} = \frac{4A}{T} = \frac{4A}{2\pi/\omega}= \frac{4A\omega}{2\pi}=\frac{2v_{max}}{\pi} \)

\(v>\frac{\pi}{4}v_{tb}\Rightarrow v >\frac{\pi}{4}.\frac{2v_{max}}{\pi} \Rightarrow v>\frac{v_{max}}{2}\)

Biểu diễn vận tốc bằng véc tơ quay ta được: 

v max max/2 M N O

Góc quay tương ứng: 2.60 = 1200

Thời gian: t = 120/360 . T = T/3

Chú ý: Nhiều bạn nhầm lẫn v là độ lớn vận tốc (tốc độ), ở bài này v là tốc độ tức thời.

21 tháng 12 2016

bài này sai rồi bạn, câu B mơis đúng, chắc chắn 100%

30 tháng 9 2015

Phương trình tổng quát: \(x= A cos(\omega t+\varphi)\)

+ Tần số góc: \(\omega = 2\pi/2 = \pi \ (rad/s)\)

+ t=0, vật qua VTCB theo chiều đương \(\Rightarrow\left\{ \begin{array}{} x_0 = 0\ cm\\ v_0 >0 \end{array} \right.\)\(\Rightarrow\left\{ \begin{array}{} \cos \varphi = 0\ cm\\ \sin \varphi <0 \end{array} \right. \Rightarrow \varphi = -\frac{\pi}{2}\)

Vậy phương trình dao động: \(x = 5\cos(\pi t - \frac{\pi}{2})\) (cm)

19 tháng 5 2018

tại sao lại ra φ=\(\dfrac{-\pi}{2}\) làm cách nào vậy bạn???

31 tháng 7 2016

Hỏi đáp Vật lý

26 tháng 9 2015

Phương trình tổng quát: \(x = Acos(\omega t +\varphi)\)

+ Tần số góc: \(\omega = \frac{2\pi}{T}=\frac{2\pi}{2} = \pi\) (rad/s)
+ Biên độ: \(A=\frac{v_{max}}{\omega}=\frac{31,4}{\pi} = 10 \ (cm)\)
+ t = 0 \(\Rightarrow\left\{ \begin{array}{} x_0 = 5\ cm\\ v_0 <0 \end{array} \right.\) \(\Rightarrow\left\{ \begin{array}{} \cos \varphi = \frac{5}{10}=0,5\\ \sin \varphi >0 \end{array} \right. \Rightarrow \varphi = \frac{\pi}{3}\)
Phương trình dao động: \(x=10\cos(\pi t + \frac{\pi}{3})\) (cm)
 
2 tháng 10 2015

Phương trình tổng quát: \(x= A\cos(\omega t +\varphi)\)

Áp dụng công thức độc lập: \(A^2 = x^2 +\frac{v^2}{\omega ^2} \Rightarrow (\frac{x}{A})^2+(\frac{v}{\omega A})^2=1\)\(\Rightarrow\left\{ \begin{array}{} A^2 = 16\ \\ \omega^2 A^2 =640 \end{array} \right.\)\(\Rightarrow\left\{ \begin{array}{} A = 4\ \\ \omega =2\pi \end{array} \right.\)

t = 0\(\Rightarrow\left\{ \begin{array}{} x_0 = A/2\\ v_0 <0 \end{array} \right.\)\(\Rightarrow\left\{ \begin{array}{} \cos \varphi = \frac{1}{2}=0,5\\ \sin \varphi >0 \end{array} \right. \Rightarrow \varphi = \frac{\pi}{3}\)

Phương trình dao động: \(x=4\cos(2\pi t +\frac{\pi}{3}) \ (cm)\)

30 tháng 9 2015

Phương trình tổng quát: \(x = Acos(\omega t +\varphi)\)

\(\omega = 2\pi f = 2\pi .10 = 20\pi \ (rad/s) \)

+ A = 4cm.

+ t = 0, vật qua x0 = A \(\Rightarrow\left\{ \begin{array}{} x_0 = 4\ cm\\ v_0 =0 \end{array} \right.\)\(\Rightarrow\left\{ \begin{array}{} \cos \varphi = 1\ cm\\ \sin \varphi = 0 \end{array} \right. \Rightarrow \varphi = 0\)

Vậy phương trình dao động: \(x = 4\cos(20\pi t) \ (cm)\)

 
12 tháng 7 2023

Làm sao để từ hệ ptr 1 suy ra đc hệ ptr 2 ạ

29 tháng 8 2015

Phương trình tổng quát: x = \(A\cos(\omega t+\varphi)\)

+ Tần số: f= 120/60 = 2 Hz \(\Rightarrow \omega = 2\pi f = 2\pi .2 = 4\pi\) (rad/s)

+ Biên độ: A = 40/4 = 10 (cm) (1 chu kì vật đi quãng đường là 4A)

t=0, vật có li độ dương, chiều hướng về VTCB, nên v0<0.

\(\Rightarrow\left\{ \begin{array}{} x_0 = 5\ cm\\ v_0 <0 \end{array} \right.\)\(\Rightarrow\left\{ \begin{array}{} \cos \varphi = 5/10=0,5\ \\ \sin \varphi > 0 \end{array} \right. \Rightarrow \varphi = \frac{\pi}{3}\)

Vậy phương trình: \(x=10\cos(4\pi t +\frac{\pi}{3})\)

29 tháng 5 2018

Giải thích chỗ cách tính Biên độ A cho em với ạ