Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(1\right)\dfrac{AB}{A'B'}=\dfrac{OA}{OA'}=\dfrac{OI}{A'B'}\) ( do \(OI=AB\) )
mik nhầm á bạn
a. Bạn tự vẽ ( ảnh ảo )
b. Xét tam giác \(OAB\sim\) tam giác \(OA'B'\)
\(\dfrac{AB}{A'B'}=\dfrac{OA}{OA'}=\dfrac{OI}{OA'}\) ( do OI = OA ) (1)
Xét tam giác \(OIF'\sim\) tam giác \(A'B'F'\)
\(\dfrac{OI}{A'B'}=\dfrac{OF'}{A'F'}\) (2)
\(\left(1\right);\left(2\right)\Rightarrow\dfrac{OA}{OA'}=\dfrac{OF'}{A'F'}=\dfrac{OF'}{OA'+OF'}\)
\(\Leftrightarrow\dfrac{5}{OA'}=\dfrac{8}{OA'+8}\)
\(\Leftrightarrow OA'=\dfrac{40}{3}\left(cm\right)\)
Thế \(OA'=\dfrac{40}{3}\) vào \(\left(1\right)\Leftrightarrow\dfrac{2}{A'B'}=5:\dfrac{40}{3}\)
\(\Leftrightarrow A'B'=\dfrac{16}{3}\left(cm\right)\)
a. Dựng ảnh A'B'
b) d > f , ảnh lớn hơn và ngược chiều với vật
c)
Tóm tắt:
OF = 12cm
OA = 18cm
AB = 6cm
A'B' = ?
Giải:
Δ ABF ~ OIF
\(\Rightarrow\dfrac{AB}{OI}=\dfrac{AF}{OF}\Leftrightarrow\dfrac{AB}{A'B'}=\dfrac{OA-OF}{OF}\Leftrightarrow\dfrac{6}{A'B'}=\dfrac{18-12}{12}\)
=> A'B' = 12cm
a/ bạn tự làm nhé
b/ Ta có: d < f: ảnh ảo, cùng chiều, lớn hơn vật
c/ Khoảng cách từ ảnh đến thấu kính là:
Áp dụng công thức tính thấu kính:
\(\dfrac{1}{f}=\dfrac{1}{d}+\dfrac{1}{d'}\)
\(\Leftrightarrow\dfrac{1}{16}=\dfrac{1}{12}+\dfrac{1}{d'}\)
\(\Leftrightarrow d'=-48\left(cm\right)\)
d) Chiều cao của ảnh
Ta có: \(\dfrac{h}{h'}=\dfrac{d}{d'}\Rightarrow h'=\dfrac{h.d'}{d}=\dfrac{2.-48}{12}=-8\left(cm\right)\)
Ảnh thật, ngược chiều và lớn hơn vật.
Vị trí đặt ảnh:
\(\dfrac{1}{f}=\dfrac{1}{d}+\dfrac{1}{d'}\Rightarrow\dfrac{1}{20}=\dfrac{1}{30}+\dfrac{1}{d'}\Rightarrow d'=60cm\)
Chiều cao ảnh:
\(\dfrac{h}{h'}=\dfrac{d}{d'}\Rightarrow\dfrac{4,5}{h'}=\dfrac{30}{60}\Rightarrow h'=9cm\)
a)
+ Vật AB cách thấu kính một khoảng d = 30 cm
Vì d > f = 10cm, nên ảnh A'B' là ảnh thật, ngược chiều và nhỏ hơn vật
b) Ta có: \(\dfrac{d}{d'}=\dfrac{h}{h'}\Leftrightarrow\dfrac{d}{h}=\dfrac{d'}{h'}\Rightarrow\dfrac{d'}{h'}=\dfrac{30}{2}\Leftrightarrow d'=15h'\)
Áp dụng công thức tính thấu kính:
\(\dfrac{1}{f}=\dfrac{1}{d}+\dfrac{1}{d'}\Leftrightarrow\dfrac{1}{f}=\dfrac{1}{d}+\dfrac{1}{15h'}\Rightarrow\dfrac{1}{10}=\dfrac{1}{30}+\dfrac{1}{15h'}\)
\(\Rightarrow h'=1\left(cm\right)\)
Vậy ảnh cao 1(cm)
Khoảng cách từ ảnh đến thấu kính:
\(d'=15h'=15.1=15\left(cm\right)\)
a)
+ Vật AB cách thấu kính một khoảng d = 30 cm
Vì d > f = 10cm, nên ảnh A'B' là ảnh thật, ngược chiều và nhỏ hơn vật
b) Ta có: \(\dfrac{d}{d'}=\dfrac{h}{h'}\Leftrightarrow\dfrac{d}{h}=\dfrac{d'}{h'}\Leftrightarrow\dfrac{d'}{h'}=\dfrac{30}{2}\Leftrightarrow d'=15h'\)
Áp dụng công thức tính thấu kính:
\(\dfrac{1}{f}=\dfrac{1}{d}+\dfrac{1}{d'}\Leftrightarrow\dfrac{1}{10}=\dfrac{1}{30}+\dfrac{1}{15h'}\)
\(\Rightarrow h'=1\left(cm\right)\)
Vậy chiều cao của ảnh là 1(cm)
Khoảng cách từ ảnh đến thấu kính:
\(d'=15h'=15.1=15\left(cm\right)\)
Khoảng cách từ ảnh đến thấu kính là:
Áp dụng công thức tính thấu kính:
\(\dfrac{1}{f}=\dfrac{1}{d}+\dfrac{1}{d'}\Rightarrow d'=\dfrac{d.f}{d-f}=\dfrac{8.4}{8-4}=8\left(cm\right)\)
Chiều cao của ảnh:
Ta có: \(\dfrac{d}{d'}=\dfrac{h}{h'}\Rightarrow h'=\dfrac{d'.h}{d}=\dfrac{8.2}{8}=2\left(cm\right)\)