Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tìm được độ dài các cạnh của tam giác lần lượt là:
6 cm, 8 cm, 10 cm.
Gọi b, c là độ dài các cạnh góc vuông,a là độ dai cạnh huyền (tính bằng cm). Ta có:
\(\dfrac{b}{7}=\dfrac{c}{24}=k\Rightarrow b=7k,c=24k\)
Theo định lí Py-ta-go:
a2 = b2 + c2 = (7k)2 + (24k)2 = 625k2 = (25k)2
nên a = 25k
Theo đề bài a + b + c = 112 (cm). Từ đó ta tính được k = 2. Vậy a = 50cm.
Gọi b, c là độ dài các cạnh góc vuông,a là độ dai cạnh huyền (tính bằng cm). Ta có:
b7=c24=k⇒b=7k,c=24kb7=c24=k⇒b=7k,c=24k
Theo định lí Py-ta-go:
a2 = b2 + c2 = (7k)2 + (24k)2 = 625k2 = (25k)2
nên a = 25k
Theo đề bài a + b + c = 112 (cm). Từ đó ta tính được k = 2. Vậy a = 50cm.
Gọi hai cạnh góc vuông cần tìm là AB,AC và cạnh huyền là BC(Điều kiện: AB>0; AC>0; BC>0)
Theo đề, ta có: AB:AC=3:4 và AB+AC+BC=24(cm)
⇔\(\dfrac{AB}{AC}=\dfrac{3}{4}\)
\(\Leftrightarrow\dfrac{AB}{3}=\dfrac{AC}{4}\)
Đặt \(\dfrac{AB}{3}=\dfrac{AC}{4}=k\)
\(\Leftrightarrow\left\{{}\begin{matrix}AB=3k\\AC=4k\end{matrix}\right.\)
Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(AB^2+AC^2=BC^2\)
\(\Leftrightarrow BC^2=\left(3k\right)^2+\left(4k\right)^2=25k^2\)
hay BC=5k
Ta có: AB+AC+BC=24cm(gt)
\(\Leftrightarrow3k+5k+4k=24\)
\(\Leftrightarrow12k=24\)
hay k=2
⇔AB=6cm; AC=8cm
Vậy: Độ dài hai cạnh góc vuông cần tìm là 6cm và 8cm
Tìm được độ dài các cạnh của tam giác lần lượt là:
6 cm, 8 cm, 10 cm.
Gọi độ dài các cạnh góc vuông của tam giác lần lượt là 5k và 12k với k> 0. Dùng định lý Py-ta-go tính được độ dài cạnh huyền là 13k, do đó
5k +12k + 13k = 30 => k = 1.
Từ đó độ dài cạnh huyền là 13 cm.
gọi độ dài 2 cạnh góc vuông đó là A,B(A,B>0)
VÌ 2 CẠNH GÓC VUÔNG TỈ LỆ VỚI 3,4 =>\(\frac{A}{3}\) =\(\frac{B}{4}\)
VÌ CẠNH HUYỀN ĐÓ BẰNG 45 CM =>A+B=45
ÁP DỤNG ĐỊNH LÝ DTSBN TA CÓ
\(\frac{A}{3}\) = \(\frac{B}{4}\)=...........
Gọi a,b,c là độ dài 3 cạnh của tam giác đó
Theo đề ta có:
\(\dfrac{a}{3}=\dfrac{b}{4}\)
Đặt: \(\dfrac{a}{3}=\dfrac{b}{4}=k\)
\(\Rightarrow\left\{{}\begin{matrix}a=3k\\b=4k\end{matrix}\right.\)
Tam giác vuông. Áp dụng định lí Pitago ta có:
a2 + b2 = c2
=> (3k)2 + (4k)2 = c2
=> 9k2 + 16k2 = c2
=> 25k2 = c2
=> c = 5k
Theo đề ta có:
a + b + c = 24
=> 3k + 4k + 5k = 24
=> 12k = 24
=> k = 2
Mà: \(\left\{{}\begin{matrix}a=3k\\b=4k\\c=5k\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}a=3.2=6\left(cm\right)\\b=4.2=8\left(cm\right)\\c=5.2=10\left(cm\right)\end{matrix}\right.\)
Vậy: Độ dài 3 cạnh của tam giác đó là 6, 8, 10