K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 1 2019

Kẻ trung tuyến AM (M thuộc BC)

Do tam giác ABC vuông tại A, AM là trung tuyến =>  AM = BC/2 = 5cm

Xét tgiac AHM vuông tại H có:  AH > AM (6>5)   vô lý

=> không tồn tại tam giác vuông nào có cạnh huyền bằng 10, chiều cao ứng với nó bằng 6

18 tháng 3 2021

a)áp dụng định lý Py-Ta-Go cho ΔABC vuông tại A 

ta có:

BC2=AB2+AC2

BC2=62+82

BC2=36+64=100

⇒BC=\(\sqrt{100}\)=10

vậy BC=10

AB và AC không bằng nhau nên không chứng minh được bạn ơi

còn ED và AC cũng không vuông góc nên không chứng minh được luôn 

Xin bạn đừng ném đá

Bài làm

~ Tự vẽ hình, đó mik lm = đt nên k vẽ đc hình ~

a) Xét ∆BOA và ∆COK có: 

OA = OK ( GT )

GÓC BOA = GÓC COK ( HAI GÓC ĐỐI )

OB = OC ( O LÀ TRUNG ĐIỂN BC )

=> ∆BOA = ∆COK ( c.g.c )

=> AB = KC ( hai cạnh tương ứng )

=> Góc ABC = GÓC KCB ( HAI GÓC TƯƠNG ỨNG )

MÀ hai góc này ở vị trí số le trong.

=> AB // CK

Mà BA  |  AC 

=> CK  |  AC

Xét ∆ABC và ∆CKA có:

AB = CK ( cmt )

Góc BAC = góc KCA ( đó AB và CK cùng vuông góc với AC )

Cạnh AC chung.

=> ∆ABC = ∆CKA. ( c.g.c )

Bài alfm

Vì tâm giác ABC = tâm giác AKC 

=> BC = AK.

Mà AO là trung điểm AK.

=> AO = 1/2 AK

Hay AO = 1/2BC

Bài 1 : Cho tam giác ABC có AB = 3cm , AC= 4cm và BC = 5cm.a) Tam giác ABC là tam giác gì?Vì sao?b)Trên cạnh BC lấy điểm D sao cho BA=BD.Từ D vẽ Dx vuông góc với BC và cắt AC tại H.Chứng minh BH là tia phân giác góc ABC.c)Vẽ trung tuyến AM.Chứng minh tam giác AMC cânBài 2 : Cho tam giác ABC vuông tại A có đường cao AH.Biết AH= 4cm,HB= 2cm,HC= 8cma) Tính độ dài các cạnh AB,ACb) Chứng minh góc B > góc CBài 3 : Cho góc xOy có...
Đọc tiếp

Bài 1 : Cho tam giác ABC có AB = 3cm , AC= 4cm và BC = 5cm.

a) Tam giác ABC là tam giác gì?Vì sao?

b)Trên cạnh BC lấy điểm D sao cho BA=BD.Từ D vẽ Dx vuông góc với BC và cắt AC tại H.Chứng minh BH là tia phân giác góc ABC.

c)Vẽ trung tuyến AM.Chứng minh tam giác AMC cân

Bài 2 : Cho tam giác ABC vuông tại A có đường cao AH.Biết AH= 4cm,HB= 2cm,HC= 8cm

a) Tính độ dài các cạnh AB,AC

b) Chứng minh góc B > góc C

Bài 3 : Cho góc xOy có Oz là tia phân giác,M là điểm bất kì thuộc tia Oz.Qua M kẻ đường thẳng a vuông góc với Ox tại A cắt Oy tại C và vẽ đường thẳng b vuông góc với Oy tại B cắt tia Ox tại D.

a) Chứng minh tam giác AOM = tam giác BOM từ đó suy ra OM là đường trung trực của đoạn thẳng AB

b) Tam giác DMC là tam giác gì?Vì sao?

c) Chứng minh DM + AM < AC

Bài 4 : Cho tam giác ABC vuông tại C có góc A= 60 độ,phân giác của góc BAC cắt BC tại E.Kẻ EK vuông góc AB tại K (K thuộc A).Kẻ BD vuông góc AE tại D (D thuộc AE).Chứng minh

a) Tam giác ACE = tam giác AKE

b) AE là đường trung trực của đoạn thẳng CK

c) KA = KB

d) EB > EC

Bài 5 : Cho tam giác ABC vuông tại A,đường cao AH.Trên cạnh BC lấy điểm D sao cho BD=BA.

a) Chứng minh góc BAD = góc BDA

b) Chứng minh AD là tia phân giác của góc HAC

c) Vẽ DK vuông góc AC.Chứng minh AK = AH

d) Chứng minh AB + AC < BC + AH

Bài 6 : Cho tam giác ABC có AB = 6cm, AC = 8cm, BC= 10cm.Gọi K là trung điểm của đoạn thẳng BC,đường trung trực của đoạn thẳng BC cắt cạnh AC tại M. Gọi D là hình chiếu vuông góc của C trên đường thẳng BM.Chứng minh rằng :

a) Tam giác ABC vuông tại A 

b) AB = DC

c) Ba đường thẳng AB , MK ,CD cùng đi qua một điểm

Bài 7 : Cho tam giác ABC vuông tại A có AB < AC. Trên cạnh huyền BC lấy điểm K sao cho CK = CA.Vẽ CM vuông góc AK tại M.Vẽ AD vuông góc BC tại D.AD cắt CM tại H.Chứng minh: 

a) Tam giác MCK = tam giác MCA 

b) HK // AB

c) HD < HA

6
29 tháng 4 2019

1
B A H C M D

a) Xét \(\Delta\)ABC:AB2+AC2=9+16=25=BC2=>\(\Delta\)ABC vuông tại A

b) Xét \(\Delta\)ABH và\(\Delta\)DBH:

                  BAH=BDH=90

                  BH chung

                  AB=DB

=>\(\Delta\)ABH=\(\Delta\)DBH(cạnh huyền-cạnh góc vuông)=>ABH=DBH=>BH là tia phân giác góc ABC

c) Áp dụng Định lý sau:"trong một tam giác vuông, đường trung tuyến ứng với cạnh huyền bằng nửa cạnh huyền"cho tam giác vuông ABC, ta có:AM=1/2BC=CM

Suy ra \(\Delta\)AMC cân tại M

29 tháng 4 2019

2.

C B A H

a) Áp dụng Định lý Pythagoras cho tam giác vuông ABH, ta có:

AB2=BH2+AH2=22+42=>AB=\(\sqrt{20}\)cm

Áp dụng Định lý Pythagoras cho tam giác vuông ACH, ta có:

AC2=AH2+CH2=42+82=>AC=\(\sqrt{80}\)cm

b) Xét \(\Delta\)ABC:AB<AC(Suy ra trực tiếp từ kết quả câu a)

Suy ra: B>C (Định lý về cạnh và góc đối diện trong tam giác)

29 tháng 2 2020

Tham khảo: Câu hỏi của Lee Linh 

5 tháng 4 2021

1581497336_lazi.jpeg

~Chúc bạn học tốt~!

2 tháng 3 2022

Áp dụng định lý pitago vào tam giác vuông ABC, có:

\(BC^2=AB^2+AC^2\)

\(\Rightarrow BC=\sqrt{6^2+8^2}=\sqrt{100}=10cm\)

b.Xét tam giác vuông ABH và tam giác vuông ADH, có:

HD = HB ( gt )

AH: cạnh chung

Vậy tam giác vuông ABH = tam giác vuông ADH ( 2 cạnh góc vuông )

=> AB = AD ( 2 cạnh tương ứng )

12 tháng 5 2021

Cho tam giác  ABC  vuông tại A có AB=6 cm , AB =8cm . Trên BA lấy  điểm D sao cho BD=BC .Từ D kẻ DE vuông góc với BC tại E (E thuộc BC)

a)Tính độ dài cạnh BC

b)Chứng minh tam giác BAC = BED

c) Gọi H là giao điểm của DE và CA. Chứng minh BH là tia phân giác của góc DBC

B A D H E C

a) Xét \(\Delta ABC\) vuông tại A có: \(BC^2=AB^2+AC^2\) (định lí Pytago)

\(\Rightarrow BC=6^2+8^2=100\)

\(\Rightarrow BC=\sqrt{100}=10\left(cm\right)\)

Vậy \(BC=10cm\).

b) Xét \(\Delta BDE\) và \(\Delta ABC\) có:

\(\widehat{BAC}=\widehat{BED}=90^o\)

\(AB=AC\left(gt\right)\)

\(\widehat{B}\) chung

\(\Rightarrow\Delta ABC=\Delta EBD\) (cạnh huyền - góc nhọn)   (đpcm)

c) Xét \(\Delta BCD\) có:

2 đường cao CA và DE cắt nhau tại H

\(\Rightarrow\)H là trực tâm của \(\Delta BCD\)

\(\Rightarrow BH\) là đường cao của \(\Delta BCD\)  (1)

Vì AB = AC nên \(\Delta BCD\) cân tại B  (2)

Từ (1), (2) \(\Rightarrow\) BH là đường cao đồng thời là tia phân giác của \(\widehat{CBD}\)   (đpcm)

12 tháng 5 2021

các bạn ơi AC=8cm nhá 

  MÌNH  nghi bài náy sai đề mà cô hốí quá......giúp mình vs

a: AB=8cm

b: xét ΔABE vuông tại A và ΔDBE vuông tại D có

BE chung

BA=BD

Do đó: ΔABE=ΔDBE

5 tháng 2 2022

Cảm ơn ạ