Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bài 11:
Gọi số phải tìm là: A = 567abc
Do A chia 5 dư 1 mà A lẻ nên c = 1
Tổng các chữ số của A là: 5 + 6 + 7 + a + b + 1 = a + b + 19
Để A chia 9 dư 1 thì a + b = 0 (loại)
a + b = 9
a + b = 18 (loại) (Có 2 chữ số bằng nhau 9 + 9)
Xét a + b = 9, a khác b và khác 5,6,7,1 ==> a = 9, b = 0 ==> A = 567901
==> a = 0, b = 9 ==> A = 567091
ĐS: 3 số phải thêm là: 901 hoặc 091
Gọi số chục là a;chữ số hàng đơn vị là b(a,b thuộc N) khi đó số đã cho là P=10a+b
Tổng của số chục và 4 lần chữ số hàng đơn vị là Q=a+4b
Ta phải chứng minh:P chia hết cho 13\(\Leftrightarrow\)Q chia hết cho 13
Thật vậy: Nếu P chia hết cho 13 tức là:10a+b chia hết cho 13\(\Rightarrow\)9P chia hết cho 13(1)
Ta xét; 9P+Q=9(10a+b)+(a+4b)=90a+9b+a+4b
=91a+13b
Vì 91 chia hết cho 13 nên 91a chia hết cho 13
13 chia hết cho 13 nên 13a chia hết cho 13
\(\Rightarrow\)91a+13b chia hết cho 13
\(\Rightarrow\)9P+Q chia hết cho 13(2)
Từ (1) và (2)\(\Rightarrow\)Q chia hết cho 13
Mặt khác: Nếu Q chia hết cho 13
Xét 9P+Q=91a+13b chia hết cho 13
\(\Rightarrow\)9P chia hết cho 13
Vì(9;130=1 nên P chia hết cho 13
Vậy P chia hết cho 13\(\Leftrightarrow\)Q chia hết cho 13
Gọi số tạo bởi 3 chữ số tận cùng là x, số hàng nghìn là y.
Khi đó số đó là:
1000y+x=1001y+(x-y)
Vì 1001y chia hết cho 7
=> số đó chia hết cho 7
<=> x-y chia hết cho 7
<=> số tạo bởi 3 chữ số tận cùng và số hàng nghìn chia hết cho 7.
Các phần khác tương tự