Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi chiều dài, chiều rộng lần lượt là a,b
Theo đề, ta có hệ phương trình:
a-b=9 và (a+2)(b+1)=ab+50
=>a-b=9 và a+2b=48
=>a=22 và b=13
Đây là sân bóng đá mini hình chữ nhật
gọi chiều dài là x m( x>0)
chiều rộng là x/2 m
theo đề ra ta có phương trình
2(x+x/2)=120
<=> x+x/2=60
<=> 3x=120
<=>x=40
vậy chiều dài sân bóng là 40
chiều rộng sânn bóng là 20
diện tích sân bóng là 40*20=800 m^2
gọi chiều rộng = a => chiều dài = a+10
Áp dụng định lý Pytago => a^2 + (a+10)^2 = độ dài đường chéo ^2 = 1300
=> 2a^2 +20a +100=1300
=> a^2 +10a-600 = 0
=> (a+30)(a-20) =0
=> a=20
=> chu vi sân bóng = 2(a+a+10) = 2.50 =100
Gọi chiều dài là a (m), hiều rộng là b(m)
Có a+b=140 : 2=70 (m)
Chiều dài sau khi tăng là a+8 (m)
chiều rộng sai khi giảm là b-5 (m)
Có hệ ptr a+b=70 (1)
(a+8)(b-5)=ab (2)
(2) <=> 8b-5a-40=0
<=>8b-5a=40
(1)<=> a=70-b
=> (2) <=> 8b+5b-350=40
<=>13b=390
<=>b=30(m)
=> a=40(m)
<=>43b=390
Gọi chiều dài và chiều rộng của sân bóng lần lượt là \(x,y\left(m\right);x,y>0\).
Vì chu vi là \(140m\)nên \(2\left(x+y\right)=140\Leftrightarrow x+y=70\)
Vì giảm chiều rộng đi \(5m\)tăng chiều dài thêm \(8m\)thì diện tích sân bóng không đổi nên
\(\left(x+8\right)\left(y-5\right)=xy\Leftrightarrow-5x+8y=40\)
Ta có hệ phương trình:
\(\hept{\begin{cases}x+y=70\\-5x+8y=40\end{cases}}\Leftrightarrow\hept{\begin{cases}5x+5y=350\\-5x+8y=40\end{cases}}\Leftrightarrow\hept{\begin{cases}x=40\\y=30\end{cases}}\)(thỏa mãn)
Vậy chiều dài là \(40m\)chiều rộng là \(30m\).
Ta có: \(AD=3AB\)
Xét tam giác vuông ABD ta có:
\(AD^2+AB^2=BD^2\)
\(\Rightarrow60^2=\left(3AB\right)^2+AB^2\)
\(\Rightarrow3600=9AB^2+AB^2\)
\(\Rightarrow3600=10AB^2\)
\(\Rightarrow AB^2=360\)
\(\Rightarrow AB=6\sqrt{10}\left(m\right)\)
\(\Rightarrow AD=3\cdot6\sqrt{10}=18\sqrt{10}\left(m\right)\)
Diện tích sân bóng là:
\(AB\cdot AD=6\sqrt{10}\cdot18\sqrt{10}=1080\left(m^2\right)\)
Câu trả lời:
Gọi chiều dài và chiều rộng sân trường lần lượt là x và y ( 0<x,y<170 ; x>y)
Vì chu vi là 340 nên ta có PT: x+y=170 (1)
Vì 3 lần chiều dài lớn hơn 4 lầm chiều rộng 20 m nên ta có PT:
3x - 4y = 20 (2)
Từ (1) và (2) ta có HPT :
\(\left\{{}\begin{matrix}x+y=170\\3x-4y=20\end{matrix}\right.\)⇔\(\left\{{}\begin{matrix}x=100\\y=70\end{matrix}\right.\)
Vậy chiều dài là chiều rộng sân trường lần lượt là 100m và 70m.
Gọi a(m) và b(m) lần lượt là chiều dài và chiều rộng của sân trường(Điều kiện: a>0; b>0)
Vì chu vi của sân trường là 340m nên ta có phương trình:
2(a+b)=340
\(\Leftrightarrow a+b=170\)(1)
Vì 3 lần chiều dài hơn 4 lần chiều rộng là 20m nên ta có phương trình:
3a-4b=20(2)
Từ (1) và (2) ta có được hệ phương trình:
\(\left\{{}\begin{matrix}a+b=170\\3a-4b=20\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3a+3b=510\\3a-4b=20\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}7b=490\\a+b=170\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=70\\a=170-70=100\end{matrix}\right.\)(thỏa ĐK)
Vậy: Chiều dài của sân trường là 100m; Chiều rộng của sân trường là 70m
Gọi a là chiều rộng của sân bóng (m), chiều dài sân bóng là a+37 (m) (a>0)
Vì diện tích sân bóng là 7140m2, nên ta có:
a. (a+37)= 7140
<=> a2 + 37a - 7140= 0
<=> a= 68 (nhận) hoặc a= -105 (loại)
Vậy chiều rộng sân bóng là 68m, chiều dài sân bóng là 105m
giải giúp mình bài mình mới đăng đi