K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 4 2022

Gọi x là số dãy ghế trong phòng lúc đầu (x nguyên, x > 3)

x - 3 là số dãy ghế lúc sau.

Số chỗ ngồi trên mỗi dãy lúc đầu: \(\dfrac{480}{x}\) (chỗ), số chỗ ngồi trên mỗi dãy lúc sau: \(\dfrac{480}{x-3}\) (chỗ)

Ta có phương trình: \(\dfrac{480}{x-3}=\dfrac{480}{x}=8\) 

480x - 480 ( x-3 ) = 8x(x-3 ) 

480x - 480x + 1440 = 8x^2 -24x

<=> 480x - 480x + 1440 - 8x^2 + 24x = 0

<=> 1440 - 8x^2 + 24x = 0

Giải ra được x1 = 15 (thỏa mãn); x2 = - 12 (loại)

Vậy trong phòng có 15 dãy ghế.

Gọi số dãy là x

Số chỗ ngồi trong 1 dãy là 360/x

Theo đề, ta có phương trình:

(360/x+4)(x-3)=360

\(\Leftrightarrow360-\dfrac{1080}{x}+4x-12=360\)

\(\Leftrightarrow-\dfrac{1080}{x}+4x+348=360\)

\(\Leftrightarrow4x-\dfrac{1080}{x}=12\)

\(\Leftrightarrow4x^2-1080=12x\)

\(\Leftrightarrow x^2-3x-270=0\)

\(\text{Δ}=\left(-3\right)^2-4\cdot1\cdot\left(-270\right)=1089>0\)

Vì Δ>0 nên phương trình có hai nghiệm phân biệt là:

\(\left\{{}\begin{matrix}x_1=\dfrac{3-33}{2}=\dfrac{-30}{2}=-15\left(loại\right)\\x_2=\dfrac{3+33}{2}=\dfrac{36}{2}=18\left(nhận\right)\end{matrix}\right.\)

19 tháng 6 2018

Gọi số dãy ban đầu là x ( x thuộc R*)

       số người mỗi dãy ban đầu là 360:x ( người )

       ------------------------lúc sau là 360:x + 4( người )

       số dãy lúc sau là x-3 ( dãy )

Ta có pt ( x-3) ( 360:x +4 ) =360

...

19 tháng 6 2018

camon

DD
29 tháng 5 2021

Gọi ban đầu số chỗ ngồi trong phòng được chia thành \(x\)dãy, \(x\inℕ^∗\).

Số ghế trong một dãy là: \(\frac{360}{x}\)(ghế) 

Theo bài ra ta có phương trình: 

\(\left(x-3\right)\left(\frac{360}{x}+4\right)=360\)

\(\Leftrightarrow\left(x-3\right)\left(360+4x\right)=360x\)

\(\Leftrightarrow4x^2-12x-1080=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=18\left(tm\right)\\x=-15\left(l\right)\end{cases}}\)

14 tháng 6 2017

Coi ban đầu có n dãy ghế ( \(n\in N\)*; n < 250 , \(n\inƯ\left(250\right)\))

Ban đầu mỗi dãy có số chỗ ngồi là : \(\frac{250}{n}\) ( chỗ )

Do có 308 người dự họp, btc kê thêm 3 dãy ghế, mỗi dãy thêm một chỗ ngồi nên ta có phương trình :

\(\left(\frac{250}{n}+1\right)\left(n+3\right)=308\)

Bạn giải PT là ra n = 25 (TMĐK) và mỗi dãy ghế có 250 / 25 = 10 ( chỗ ngồi ).

7 tháng 4 2019

Đáp án : 

10 chỗ ngồi 

Hok tốt

16 tháng 1 2019

bài mẫu nè:

gọi số dãy ghế là x, số ghê là y 
theo đb ta có hpt 
(x-2)(y+2)=288 
xy=288 
giải pt tìm đk x=18; y=16 

27 tháng 5 2021

sai r bạn ak phải ra là 2 TH là 12(tm) và -16( k tm)

 

23 tháng 5 2018

Gọi số ghế ở mỗi hàng ban đầu là x (ghế, x > 0)
Gọi số hàng ghế trong phòng ban đầu là y (hàng, y < 50)
Ta có x nhân y = 240
Khi tăng số ghế và số hàng ta có (x + 1)(y + 3)= 315
Ta có hệ phương trình {x nhân y= 240
                                     {y + 3x = 72
Giải hệ phương trình ta có y= 12; x= 20
Vậy số dãy ghế có trong phòng lúc đầu là 12 hàng.