Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi vận tốc ban đầu của ô tô là x(km/h)(Điều kiện: x>0)
Thời gian để đi nửa quãng đường còn lại với vận tốc ban đầu là:
\(\dfrac{210}{x}\)(h)
Thời gian thực tế để đi nửa quãng đường còn lại là:
\(\dfrac{210}{x+2}\)(h)
Vì khi đi được nửa quãng đường xe nghỉ 15' nhưng vẫn đến B đúng giờ nên ta có phương trình:
\(\dfrac{210}{x+2}+\dfrac{1}{4}=\dfrac{210}{x}\)
\(\Leftrightarrow\dfrac{840x}{4x\left(x+2\right)}+\dfrac{x\left(x+2\right)}{4x\left(x+2\right)}=\dfrac{840\left(x+2\right)}{4x\left(x+2\right)}\)
Suy ra: \(840x+x^2+2x=840x+1680\)
\(\Leftrightarrow x^2+842x-840x-1680=0\)
\(\Leftrightarrow x^2+2x-1680=0\)
\(\Leftrightarrow x^2+2x+1-1681=0\)
\(\Leftrightarrow\left(x+1\right)^2-41^2=0\)
\(\Leftrightarrow\left(x+1-41\right)\left(x+1+41\right)=0\)
\(\Leftrightarrow\left(x-40\right)\left(x+42\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-40=0\\x+42=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=40\left(thỏa\right)\\x=-42\left(loại\right)\end{matrix}\right.\)
Vậy: Vận tốc ban đầu là 40km/h
Để giải hệ phương trình theo phương pháp thế, ta cần tìm ra 2 biến là vận tốc dự định (v1) và vận tốc tăng thêm (v2) sau khi nghỉ 30 phút.
Quãng đường đi đầu tiên: 120km / 2 = 60kmThời gian đi đầu tiên: 60km / v1 = t1Quãng đường đi thứ hai: 120km - 60km = 60kmThời gian đi thứ hai: 60km / (v1 + 20km/h) = t2Ta có 2 phương trình:
t1 + t2 + 0.5 = 8 (giờ) (với thời gian nghỉ là 30 phút)v1 * t1 + (v1 + 20km/h) * t2 = 120kmTa có thể giải hệ phương trình bằng cách sử dụng phương pháp thế, bằng cách giải một biến trong hai phương trình trên và thay vào phương trình còn lại.
Vận tốc dự định của ô tô là: v1 = 80 km/h.
Gọi vận tốc của người đi xe đạp lúc đầu là x(x>0)
Thời gian dự định đi hết quãng đường AB là : \(\frac{30}{x}\left(h\right)\)
Thời gian người đó đi hết nửa quãng đường đầu là : \(\frac{15}{x}\left(h\right)\)
Thời gian người đó đi hết nửa quãng đường sau là : \(\frac{15}{x+2}\left(h\right)\)
15 phút=\(\frac{1}{4}\)h Ta có:
\(\frac{30}{x}=\frac{15}{x}+\frac{1}{4}+\frac{15}{x+2}\)
\(\Leftrightarrow\frac{15}{x}-\frac{15}{x+2}=\frac{1}{4}\)
\(\Leftrightarrow\frac{1}{x}-\frac{1}{x+2}=\frac{1}{60}\)
\(\Leftrightarrow\frac{2}{x\left(x+2\right)}=\frac{1}{60}\)
\(\Leftrightarrow x\left(x+2\right)=120\)
\(\Leftrightarrow\orbr{\begin{cases}x=-12\\x=10\end{cases}\Rightarrow x=10}\)
Gọi vận tốc ban đầu của người đó là x(km/h)
(ĐIều kiện: x>0)
Thời gian dự kiến của người đó sẽ đi hết quãng đường là \(\dfrac{36}{x}\left(h\right)\)
Độ dài nửa quãng đường còn lại là: 36*1/2=18(km)
Thời gian đi nửa quãng đường đầu tiên là \(\dfrac{18}{x}\left(giờ\right)\)
vận tốc của người đó ở 18km còn lại là x+2(km/h)
Thời gian người đó đi hết 18km còn lại là \(\dfrac{18}{x+2}\left(h\right)\)
Theo đề, ta có phương trình:
\(\dfrac{18}{x}+\dfrac{18}{x+2}+\dfrac{3}{10}=\dfrac{36}{x}\)
=>\(\dfrac{18}{x+2}-\dfrac{18}{x}=-\dfrac{3}{10}\)
=>\(\dfrac{6}{x}-\dfrac{6}{x+2}=\dfrac{1}{10}\)
=>\(\dfrac{6x+12-6x}{x\left(x+2\right)}=\dfrac{1}{10}\)
=>\(\dfrac{12}{x\left(x+2\right)}=\dfrac{1}{10}\)
=>x(x+2)=120
=>\(x^2+2x-120=0\)
=>\(\left(x+12\right)\left(x-10\right)=0\)
=>\(\left[{}\begin{matrix}x+12=0\\x-10=0\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}x=-12\left(loại\right)\\x=10\left(nhận\right)\end{matrix}\right.\)
Vậy: Vận tốc ban đầu là 10km/h
Thời gian xe lăn bánh trên đường là \(\dfrac{36}{10}=3,6\left(giờ\right)\)
Gọi vận tốc ô tô ban đầu là x (đk x>0) (km/h)
thời gian đi nửa quãng đường còn lại với vận tốc ban đấu là :\(\frac{420}{x}\)(giờ)
thời gian đi nửa quãng đường còn lại là :\(\frac{420}{x+2}\)(giờ)
Vì đi được nửa quảng đường xe nghỉ 30 phút nhưng vẫn đến B đúng giờ ,ta có pt:
\(\Rightarrow\)\(\frac{420}{x+2}+\frac{1}{2}=\frac{420}{x}\)
\(\Rightarrow\)\(840x+x\left(x+2\right)-840\left(x+2\right)=0\)
\(\Leftrightarrow\)\(x^2+2x-1680=0\)
\(\Rightarrow\)\(x1=40\left(nhận\right)\)và \(x2=-42\left(loại\right)\)
\(Vậy\)vận tốc ban đấu của ô tô là 40 km/h