Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
do số học sinh khi xếp hàng 2 , hàng 3 , hàng 4 , hàng 5, hàng 6 đều thiếu một học sinh
nên tổng số học sinh khi cộng thêm 1 sẽ chia hết cho 2,3,4,5,6
Gọi tổng số học sinh là a (học sinh)
suy ra (a+1) là BC ( 2,3,4,5,6)
(a+1) = 60; 120;180; 240; 300; 360 ...
a= 58; 119; 179; 239; 299; 359;...
mà khi xếp 7 hàng thì vừa đủ và a <300
nên a= 119
vậy học sinh khổi 6 là 119 học sinh
chúc pạn hok tốt
Gọi số học sinh là a
Vì số học sinh xếp thành hàng 2,hàng 3,hàng 4 ,hàng 5,hàng 6 ,đều thiếu 1 người nên a+1 chia hết cho cả 2,3,4,5,6
\(\Leftrightarrow\)a+1\(\in\)BCNN(2,3,4,5,6)=\(2^2\)x3x5=60 học sinh
\(\Rightarrow\)a+1\(\in\)B(60)={0,60,120,130,240,300,...}
\(\Rightarrow\)a\(\in\){59,119,129,239,...}
Mà a chia hết cho 7 \(\Rightarrow\)a=119
Vậy số học sinh là 119
Gọi số học sinh là a, \(\left(a\in N\right)\)
Vì số học sinh khi xếp hàng 2, hàng 3, hàng 4, hàng 5, hàng 6 đều thiếu 1 người, nhưng khi xếp hàng 7 thì vừa đủ nên :
a + 1 chia hết cho 2
a + 1 chia hết cho 3
a + 1 chia hết cho 4
a + 1 chia hết cho 5
a + 1 chia hết cho 6
a chia hết cho 7
=> a + 1 thuộc BC (2, 3, 4, 5, 6)
2 = 2 ; 3 = 3 ; 4 = 22 ; 5 = 5 ; 6 = 2 . 3
BCNN (2, 3, 4, 5, 6) = 22 . 3 . 5 = 60
a + 1 thuộc BC (2, 3, 4, 5, 6) = B (60) = {0 ; 60 ; 120 ; 240 ; 300 ; 360 ; ...}
=> a thuộc {59 ; 119 ; 239 ; 299 ; 359 ; ...}
Mà a chia hết cho 7 ; a < 300 => a = 119
Vậy số học sinh là 119 học sinh.
Tính ước chung lớn nhất của 2 ; 3 ; 4 ; 5 ; 6 : \(ƯC\left(2;3;4;5;6\right)=\left\{60;120;180;240;...\right\}\)
Vì khi xếp hàng 2 ; 3 ; 4 ; 5 ; 6 đều thiếu một người tức là khi chia cho các số đó thì thiếu 1 để có phép chia hết
Mà số hs chưa đến 300 nên các số đó là \(\left\{59;119;179;239;299\right\}\)
Mà xếp hàng 7 thì vừa nên số hs chia hết cho 7. Ở đây có mỗi 119 chia hết cho 7
=> Vậy số học sinh là 119
gọi số hs là a
ta có :
a chia 2,3,4,5,6 đều thiếu 1
=>a+1 chia hết cho 2,3,4,5,6
=>a+1 thuộc BC(2,3,4,5,6)
2=2
3=3
4=22
5=5
6=2.3
=>BCNN(2,3,4,5,6)=22.3.5=60
=>a+1 thuộc B(60)=0;60;120;180;240;300...}
=>a thuộc {59;119;179;239;299...}
mà a<300 và a chia hết cho 7
=>a=119
Giải
Ta có số học sinh lớp đó là x thì x+1 chia hết cho 2,3,4,5,6
Vậy Ta tìm bội của 2,3,4,5,6 là:60;120;180;240
X có thể là 60;120;180;240﴾chú ý bội này phải dưới 300 hs﴿
Và +x+1=60
x=59﴾0 chia hết cho 7 loại﴿
+ x+1=120 x=119﴾chia hết cho 7 được﴿
+x+1=180 x=179﴾0 chia hết cho 7 loại﴿
+x+1=240 x=239﴾0 chia hết cho 7 loại﴿
Vậy số học sinh của lớp này là:119 hoc sinh Đáp số:119 học sinh
Tick nha !!!
Gọi số học sinh là a (0<a<300)
Ta có a+1 là bội chung của 2,3,4,5,6 và 1<a+1<301.Do a\(⋮\) 7 ta tìm được a+1=120 nên a=119.Số học sinh la 119 người
Gọi số học sinh của khối là x.
Khi xếp x học sinh vào hàng 2;3;4;5;6 đều thiếu 1 người nghĩa là x chia cho 2;3;4;5;6 dư 1.Xếp hàng 7 thì vừa đủ có nghĩa là x chia hết cho 7.
=> x+1\(⋮\) 2;3;4;5;6
=> x+1\(\in\)BC(2;3;4;5;6)
=> x+1 \(\in\) {0;60;120;180;260;320;....}
Mà 0\(\le\)x+1\(\le\)300
=> Nếu x+1=120 thì x= 119\(⋮\)7
Nếu x+1=180 thì x= 179\(⋮̸\) 7
Vậy số học sinh của khối là 119 em