Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(=>vtb=\dfrac{S}{\dfrac{\dfrac{1}{2}S}{v1}+\dfrac{\dfrac{1}{2}S}{v2}}=\dfrac{S}{\dfrac{S}{40}+\dfrac{S}{2v2}}=\dfrac{S}{\dfrac{S\left(2v2+40\right)}{80v2}}=\dfrac{80v2}{2v2+40}=15\)
\(=>v2=12km/h\)
a) \(24ph=\dfrac{2}{5}h\)
\(t_1=\dfrac{S_1}{v_1}=\dfrac{20}{25}=\dfrac{4}{5}\left(h\right)\)
\(v_{tb}=\dfrac{S_1+S_2}{t_1+t_2}=\dfrac{20+14,4}{\dfrac{4}{5}+\dfrac{2}{5}}=\dfrac{86}{3}\left(\dfrac{km}{h}\right)\)
b) \(7h30ph=7,5h\)
\(t_{tổng}=y_1+t_2=\dfrac{4}{5}+\dfrac{2}{5}=\dfrac{6}{5}\left(h\right)\)
Thời gian người đó đến nơi: \(7,5+\dfrac{6}{5}=8,7\left(h\right)=8h42ph\)
Thời gian đi quãng đường đầu và quãng đường sau là:
\(\left\{{}\begin{matrix}t_1=\dfrac{S_1}{v_1}=\dfrac{S}{2v_1}=\dfrac{S}{24}\left(h\right)\\t_2=\dfrac{S_2}{v_2}=\dfrac{S}{2v_2}=\dfrac{S}{40}\left(h\right)\end{matrix}\right.\)
Vận tốc trung bình là: \(v_{tb}=\dfrac{S_1+S_2}{t_1+t_2}=\dfrac{S}{\dfrac{S}{24}+\dfrac{S}{40}}=\dfrac{S}{S\left(\dfrac{1}{24}+\dfrac{1}{40}\right)}=15\left(\dfrac{km}{h}\right)\)
có vẻ hơi thiếu dữ kiện rồi, bạn phải cho quãng đường hoặc thời gian của cả 2 đoạn đường thì mới tính được
Đổi: 6m/s=21,6km/h
Thời gian đi trên đoạn đường 1:
\(S_1=v_1\cdot t_1\Rightarrow t_1=\dfrac{5,4}{21,6}=0,25h\)
Vận tốc trung bình:
\(v_{tb}=\dfrac{S}{t_1+t_2}=\dfrac{S}{0,25+0,4}=18\)
\(\Rightarrow S=11,7km\)