Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
đáp án là 10km/h
Gợi ý: ta có pt là
20/a + 1/4 = 1 + (20-a)/(a-2)
Trong đó:
a là vận tốc dự định
20/a là thời gian dự định
1/4 là 15p
(20-a)/(a-2) là thời gian đi trong quãng đường còn lại
Khai triển pt ta sẽ có:
4(a^2-40) = 3(a^2-2a)
<=>4a^2-160 = 3a^2 - 6a
<=>a^2 + 6a = 160
<=>a^2 + 6a - 160= 0
<=>a^2 + 16a - 10a - 160= 0
<=>a(a +16) - 10(a +16) = 0
<=>(a +16)(a -10) = 0
+Hoặc a +16 =0 <=> a= -16(loại vì vận tốc luôn luôn dương)
+Hoặc a -10 =0 <=> a= 10 (nhận)
Vậy vận tốc dự định của người đi xe đạp là 10km/h
Gọi x (km/h) là vận tốc dự định của người đó (x>5)
Vận tốc người đó giảm vận tốc 5km/h là x−5 (km/h)
Thời gian dự đinh đi là: \(\dfrac{60}{x}\)(giờ)
Thời gian thực tế người đó đi nửa quãng đường đầu là: \(\dfrac{30}{x}\)(giờ)
Thời gian thức tế người đó đi nửa quãng đường còn lại là: \(\dfrac{30}{x-5}\)(giờ)
Theo đề ra ta có thời gian thực tế chậm hơn thời gian dự định là 1 giờ nên ta có:
\(\dfrac{60}{x}\)=\(\dfrac{30}{x}\)+ \(\dfrac{30}{x-5}\) - 1
⇒ 60(x-5) = 30(x-5) + 30x - x(x-5)
⇔ 60x - 300 = 30x - 150 + 30x - x2+5x
⇔ x2 - 5x - 150 = 0
⇔ \(\left[{}\begin{matrix}x=15\left(tm\right)\\x=-10\left(loại\right)\end{matrix}\right.\)
Vậy.....
Gọi độ dài quãng đường AB là x>0 (km)
Thời gian dự định: \(\frac{x}{14}\) giờ
Nửa quãng đường đầu người đó đi mất: \(\frac{x}{2.14}=\frac{x}{28}\) giờ
Nửa quãng đường sau mất: \(\frac{x}{2.12}=\frac{x}{24}\) giờ
Theo bài ra ta có pt:
\(\frac{x}{24}-\frac{x}{28}=\frac{5}{28}\Rightarrow x=30\left(km\right)\)