Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi x (km) là độ dài quãng đường AB (Điều kiện: x ∈ Z; x>0)
Vận tốc lúc đi là \(\dfrac{x}{3}\) (km/h)
Vận tốc lúc về là \(\dfrac{x}{4}\) (km/h)
Theo đề bài ta có phương trình:
\(\dfrac{x}{3}\) - \(\dfrac{x}{4}\) = 12
MSC (mẫu số chung): 12
Quy đồng mẫu hai vế và khử mẫu ta được:
4x - 3x = 144
⇔ x = 144 (nhận)
Vậy quãng đường AB dài 144 km
Gọi quãng đường AB là x ( x> 0 )
Theo bài ra ta có pt \(\frac{x}{25}-\frac{x}{30}=\frac{1}{3}\Rightarrow x=50\left(tm\right)\)
Gọi x(km/h) là vận tốc lúc đi của xe máy ( x > 0 )
Tổng thời gian đi và về ( không tính thời gian nghỉ ) là :
3h40' - 20' = 3h20' = 10/3h
Thời gian xe máy đi từ A đến B là 25/x (h)
Vận tốc lúc về hơn vận tốc lúc đi là 8km/h
=> Vận tốc lúc về là x+8(km/h)
Thời gian xe máy đi từ B về A là 25/(x+8) (h)
Vì tổng thời gian đi và về và 10/3h nên ta có phương trình :
\(\dfrac{25}{x}+\dfrac{25}{x+8}=\dfrac{10}{3}\)( giải pt này thì dễ rồi mình không làm )
=> x1 = -5 (ktm) ; x2 = 12(tm)
Vậy vận tốc lúc đi của xe máy đó là 12km/h
Gọi vận tốc từ A đến B là x (km/h)(x>0)
Theo bài ta có: \(\dfrac{90}{x}+\dfrac{90}{x+9}+\dfrac{1}{2}=5\)
=> \(\dfrac{90\left(x+9\right)}{x\left(x+9\right)}+\dfrac{90x}{x\left(x+9\right)}=\dfrac{9}{2}\)
=> \(\dfrac{90x+810+90x}{x^2+9x}=\dfrac{9}{2}\)
=> \(\dfrac{180x+810}{x^2+9x}=\dfrac{9}{2}\)
=> \(360x+1620=9x^2+91x\)
=> \(9x^2-269x-1620=0\)
=> x = 36
hoặc x = -5 (loại)
Vậy vtoc xe máy là 36km/h
Trả lời:
Đổi: \(30ph=\frac{1}{2}h\)
Gọi vận tốc xe máy lúc đi từ A đến B là: x ( km/h; x > 0 )
=> vận tốc xe máy lúc đi từ B về A là: x + 9 ( km/h )
thời gian xe máy đi từ A đến B là: \(\frac{90}{x}\)( giờ )
thời gian xe máy đi từ B về A là: \(\frac{90}{x+9}\)( giờ )
Theo bài ra, ta có:
\(\frac{90}{x}+\frac{90}{x+9}+\frac{1}{2}=5\)
\(\Leftrightarrow\frac{90}{x}+\frac{90}{x+9}=\frac{9}{2}\)
\(\Leftrightarrow\frac{90\left(x+9\right)}{x\left(x+9\right)}+\frac{90x}{x\left(x+9\right)}=\frac{9}{2}\)
\(\Leftrightarrow\frac{90x+810+90x}{x\left(x+9\right)}=\frac{9}{2}\)
\(\Leftrightarrow\frac{180x+810}{x\left(x+9\right)}=\frac{9}{2}\)
\(\Rightarrow2\left(180x+810\right)=9x\left(x+9\right)\)
\(\Leftrightarrow360x+1620=9x^2+81x\)
\(\Leftrightarrow9x^2+81x-360x-1620=0\)
\(\Leftrightarrow9x^2-279x-1620=0\)
\(\Leftrightarrow9\left(x^2-31x-180\right)=0\)
\(\Leftrightarrow x^2-31x-180=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=36\left(tm\right)\\x=-5\left(ktm\right)\end{cases}}\)
Vậy vận tốc xe máy lúc đi từ A đến B là: 36km/h.
Tổng thời gian đi và về là: 9h30'-7h-15 phút = 2h15' = 9/4h
Gọi quãng đường AB là x(x>0)
Thời gian đi từ A đến B là \(\dfrac{x}{50}\left(h\right)\)
Thời gian đi từ A đến B là \(\dfrac{x}{40}\left(h\right)\)
Theo bài ra ta có pt:
\(\dfrac{x}{50}+\dfrac{x}{40}=\dfrac{9}{4}\\ \Leftrightarrow\dfrac{4x}{200}+\dfrac{5x}{200}=\dfrac{450}{200}\\ \Leftrightarrow9x=450\\ \Leftrightarrow x=50\left(tm\right)\)
Vậy quãng đường AB là 50 km
đổi `1h50p=11/6(h)`
gọi vận tốc lúc đi là `x(km//h)(x>0)`
Vận tốc xe về là `x +5(km//h)`
Quãng đường xe đi từ `A->B` : `2x(km)`
Quãng đường xe đi từ `B-> A` : 11/6(x+5)(km)`
Vì quãng đg đi và về bằng nhau mà ko đổi nên ta có
`2x=11/6(x+5)`
`<=> 2x -11/6x = 5*11/6`
`<=> 1/6x =55/6`
`=> x=55(t//m)`
Vậy độ dài `AB` là `2*55 =110(km)`