K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 9 2017

Xác suất để linh kiện 1 hoạt động tốt là: 1-0,2=0,8

Xác suất để linh kiện 2 hoạt động tốt là: 1-0,1=0,9

Xác suất để linh kiện 3 hoạt động tốt là: 1-0,05=0,95

Lưu ý rằng khi mắc mạch song song, linh kiện 1 hỏng thì linh kiện 2 vẫn hoạt động tốt và ngược lại.

Xác suất để cả 3 linh kiện hoạt động tốt là:  0 , 8.0 , 9.0 , 95 = 0 , 684

Xác suất để linh kiện 1 hỏng, 2 linh kiện còn lại hoạt động tốt là:  0 , 2.0 , 9.0 , 95 = 0 , 171

Xác suất để linh kiện 2 hỏng, 2 linh kiện còn lại hoạt động tốt là:  0 , 8.0 , 1.0 , 95 = 0 , 076

Vậy xác suất để mạch hoạt động được là:  0 , 684 + 0 , 171 + 0 , 076 = 0 , 931

Chọn đáp án A.

29 tháng 8 2017

Đáp án C.

Để hoạt động tốt, mạch điện có thẻ có các trường hợp sau:

TH1: 1 tốt, 2 tốt,3 tốt, 4 tốt: P1 = 0,8.0,9.0,95.0,98 = 0,67032

TH2: 1 tốt, 2 tốt,3 cháy, 4 tốt: P1 = 0,8.0,9.0,05.0,98 = 0,03528

TH3: 1 tốt, 2 cháy,3 tốt, 4 tốt: P1 = 0,8.0,1.0,95.0,98 = 0,07448

Từ đó xác suất để mạch hoạt động tốt là 0,67032 +  0,03528 + 0,07448 = 0,78008

NV
7 tháng 4 2022

Gọi xác suất bộ phận 1 bị hỏng là x với \(0\le x\le1\)

Xác suất không bị hỏng của 2 bộ phận lần lượt là \(1-x\) và \(0,2\)

Xác suất có đúng 1 bộ phận bị hỏng (gồm 2 TH1: 1 hỏng 2 bình thường, 1 bình thường 2 hỏng):

\(x.0,2+\left(1-x\right).0,8=0,38\)

\(\Rightarrow x=0,7\)

4 tháng 4 2017

Trả lời:

a) Vận tốc của chuyển động khi t = 2 (s).

Ta có:

v=dsdt=S′=3t2−6t−9v=dsdt=S′=3t2−6t−9

Khi t = 2(s) ⇒ 3.22 – 6.22 – 9 = -9 m/s.

b) Gia tốc của chuyển động khi t = 3(s). Ta có:

a=dvdt=v′=6t−6a=dvdt=v′=6t−6

Ở t = 3(s) ⇒ a = 6.3 – 6 = 12 m/s2

c) Ta có: v = 3t2 – 6t – 9

Tại thời điểm vận tốc triệt tiêu:

v=0⇔3t2−6t−9=0⇔t2−2t−3=0⇔[t=−1(l)t=3(s)v=0⇔3t2−6t−9=0⇔t2−2t−3=0⇔[t=−1(l)t=3(s)

Gia tốc: a = 6t – 6.

Khi t = 3s ⇒ a = 6.3 – 6 = 12 m/s2

d) Ta đã có a = 6t – 6.

Khi a = 0 ⇔ 6t – 6= 0 ⇔ t = 1(s)

Lại có: v = 3t2 – 6t – 9

Khi t = 1(s) ⇒ v = 3.12 – 6.1 – 9 = -12 m/s



2 tháng 5 2017

câu b.. v'=6t-6 là s v bạn??

9 tháng 4 2017

a) Vận tốc trung bình của chuyển động trong khoảng thời gian từ t đến t + ∆t

vtb = = = g .(2t + ∆t) ≈ 4,9. (2t + ∆t).

Với t = 5 và

+) ∆t = 0.1 thì vtb ≈ 4,9. (10 + 0,1) ≈ 49,49 m/s;

+) ∆t = 0,05 thì vtb ≈ 4,9. (10 + 0,05) ≈ 49,245 m/s;

+) ∆t = 0,001 thì vtb ≈ 4,9. (10 + 0,001) ≈ 49,005 m/s.

b) Vận tốc tức thời của chuyển động tại thời điểm t = 5s tương ứng với ∆t = 0 nên v ≈ 4,9 . 10 = 49 m/s.

9 tháng 4 2017

a) Hình vuông thứ nhất có cạnh bằng nên u1 = ()2 = .

Hình vuông thứ hai có cạnh bằng nên u2 = ()2 = .

Hình vuông thứ ba có cạnh bằng nên u3 = ()2 = .

Tương tự, ta có un =

b) Dãy số (un) là một cặp số nhân lùi vô hạn với u1 = và q = . Do đó

lim Sn = .

23 tháng 1 2022

:(

11 tháng 5 2017

a) Cần biết ít nhật ba trong năm đại lượng u1, n, d, un, Sn thì có thể tính được hai đại lượng còn lại.

b) Thực chất đây là năm bài tập nhỏ, mỗi bài ứng với các dữ liệu ở một dòng. Học sinh phải giải từng bài nhỏ rồi mới điền kết quả.

b1) Biết u1 = -2, un = 55, n = 20. Tìm d, Sn

Áp dụng công thức d = , Sn =

Đáp số: d = 3, S20 = 530.

b2) Biết d = -4, n = 15, Sn = 120. Tìm u1, un

Áp dụng công thức un = u1 + (n - 1)d và Sn = ,

ta có:

Giải hệ trên, ta được u1 = 36, u15 = - 20.

Tuy nhiên, nếu sử dụng công thức

thì S15 = 120 = 15u1 + .

Từ đó ta có u1 = 36 và tìm được u15 = - 20.

b3) Áp dụng công thức un = u1 + (n - 1)d, từ đây ta tìm được n; tiếp theo áp dụng công thức . Đáp số: n = 28, Sn = 140.

b4) Áp dụng công thức , từ đây tìm được n, tiếp theo áp dụng công thức un = u1 + (n - 1)d. Đáp số: u1 = -5, d= 2.

b5) Áp dụng công thức , từ đây tìm được n, tiếp theo áp dụng công thức un = u1 + (n - 1)d. Đáp số: n = 10, un = -43

Giả sử ABC là tam giác vuông cân tại A với độ dài cạnh góc vuông bằng 1. Ta tạo ra các hình vuông theo các bước sau đây : - Bước 1 : Dựng hình vuông mầu xám có một đỉnh là A, ba đỉnh còn lại là các trung điểm của ba cạnh AB, BC và AC (H1). Kí hiệu hình vuông này là (1)  - Bước 2 : Với 2 tam giác vuông cân mầu trắng còn lại như trong hình 1, ta lại tạo được 2 hình vuông mầu xác khác theo...
Đọc tiếp

Giả sử ABC là tam giác vuông cân tại A với độ dài cạnh góc vuông bằng 1. Ta tạo ra các hình vuông theo các bước sau đây :

- Bước 1 : Dựng hình vuông mầu xám có một đỉnh là A, ba đỉnh còn lại là các trung điểm của ba cạnh AB, BC và AC (H1). Kí hiệu hình vuông này là (1) 

- Bước 2 : Với 2 tam giác vuông cân mầu trắng còn lại như trong hình 1, ta lại tạo được 2 hình vuông mầu xác khác theo cách trên, kí hiệu là (2) (H2)

- Bước 3 : Với 4 tam giác vuông cân mầu trắng như trong hình 2, ta lại tạo được 4 hình vuông với mầu xám theo cách trên (H3)

- ..........

- Bước n : Ở bước này ta có \(2^{n-1}\) hình vuông với mầu sám được tạo thành theo cách trên, kí hiệu là (n)

a) Gọi \(u_n\) là tổng diện tích của tất cả các hình vuông mới được tạo thành ở bước thứ n.

Chứng minh rằng :

               \(u_n=\dfrac{1}{2^{n+1}}\)

b) Gọi \(S_n\) là tổng diện tích của tất cả các hình vuông mầu xám có được sau n bước. Quan sát hình vẽ để dự đoán giới hạn của \(S_n\) khi \(n\rightarrow+\infty\). Chứng minh dự đoán đó ?

1