K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
7 tháng 5 2023

Có 20 cây số lẻ (1;3;5...;39) và 20 cây số chẵn (2;4;...;40)

Để tổng 5 cây là chẵn \(\Rightarrow\) số cây lẻ phải chẵn

\(\Rightarrow\) Các trường hợp thỏa mãn gồm: 0 lẻ 5 chẵn, 2 lẻ 3 chẵn, 4 lẻ 1 chẵn

\(\Rightarrow C_{20}^5+C_{20}^2.C_{20}^3+C_{20}^4.C_{20}^1\) cách chọn thỏa mãn

NV
7 tháng 5 2023

Chia các con số từ 1 đến 50 làm 3 tập: 

\(A=\left\{3;6;...;48\right\}\) gồm 16 phần tử chia hết cho 3

\(B=\left\{1;4;...;49\right\}\) gồm 17 phần tử chia 3 dư 1

\(C=\left\{2;5;...;50\right\}\) gồm 17 phần tử chia 3 dư 2

Tổng 5 cây chia 3 gồm các trường hợp: 5A, 1A2B2C, 2A3B, 2A3C, 3A1B1C, 1B4C, 4B1C

7 tháng 5 2023

giúp em với em cảm ơn https://hoc24.vn/cau-hoi/biet-m0-tim-m-de-phuong-trinh-cos2leftdfracpi3mxright-4cosleftdfracpi6-mxright4co-dung-4-nghiem-phan-biet-tren-01.8007403072644

HQ
Hà Quang Minh
Giáo viên
28 tháng 9 2023

a) Số bạn đi xe đạp đến trường là: \(40.40\%  = 16\) ( học sinh )

b) Chọn ngẫu nhiên một bạn để phân công vào đội xung kích của trường từ 40 bạn ta được một tổ hợp chập 1 của 40 phần tử. Do đó, không gian mẫu \(n\left( \Omega  \right) = C_{40}^1\)( phần tử)

Gọi A là biến cố “Bạn được chọn là bạn đến trường bằng xe đạp”.

Để chọn 1 bạn học là bạn đến trường bằng xe đạp ta được một tổ hợp chập 1 của 16 phần tử. Do đó số phần tử của biến cố A là: \(n\left( A \right) = C_{16}^1\)( phần tử)

Vậy xác suất của biến cố A là: \(P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega  \right)}} = \frac{{C_{16}^1}}{{C_{40}^1}} = \frac{2}{5}\)

HQ
Hà Quang Minh
Giáo viên
1 tháng 10 2023

\(\Omega \) là tập tất cả 6 học sinh trong 12 học sinh. Vậy \(n\left( \Omega  \right) = C_{12}^6 = 924\).

Gọi C là biến cố: “Có 3 học sinh nam và 3 học sinh nữ”. Có \(C_7^3\) cách chọn chọn 3 học sinh nam và \(C_5^3\) cách chọn 3 học sinh nữ. Theo quy tắc nhân, ta có \(C_7^3.C_5^3 = 350\) cách chọn 3 học sinh nam và 3 học sinh nữ tức là \(n\left( C \right) = 350\).Vậy \(P\left( C \right) = \frac{{350}}{{924}} \approx 0,3788\).

HQ
Hà Quang Minh
Giáo viên
27 tháng 9 2023

Tổng số khả năng có thể xảy ra của phép thử là \(n\left( \Omega  \right) = C_{12}^4\)

a) Số kết quả thuận lợi cho biến cố “Bốn bạn thuộc 4 tổ khác nhau” là số cách sắp xếp 4 bạn vào 4 tổ có \(4!\) cách

Vậy xác suất của biến cố “Bốn bạn thuộc 4 tổ khác nhau” là \(P = \frac{{4!}}{{C_{12}^4}} = \frac{8}{{165}}\)

b) Gọi là biến cố “Bốn bạn thuộc 2 tổ khác nhau”

xảy ra với 2 trường hợp sau:

TH1: 3 bạn cùng thuộc 1 tổ và 1 bạn thuộc tổ khác có \(C_4^3.C_3^1.C_2^1 = 24\) cách

TH2: cứ 2 bạn cùng thuộc 1 tổ \(C_4^2.C_3^1.C_2^2.C_2^1 = 36\) cách

Suy ra, số kết quả thuận lợi cho biến cố là \(n\left( A \right) = 24 + 36 = 60\)

Vậy xác suất của biến cố “Bốn bạn thuộc 2 tổ khác nhau” là \(P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega  \right)}} = \frac{{60}}{{C_{12}^4}} = \frac{4}{{33}}\)

NV
21 tháng 4 2023

Không gian mẫu: \(C_{10}^3\)

Số cách chọn sao cho có 2 nữ 1 nam là: \(C_6^2.C_4^1\)

Xác suất: \(P=\dfrac{C_6^2.C_4^1}{C_{10}^3}=\dfrac{1}{2}\)

loading...    

NV
21 tháng 4 2023

Không gian mẫu: \(A_6^3=120\)

Gọi số cần lập có dạng \(\overline{abc}\)

Số chia hết cho 5 \(\Rightarrow c=5\) (1 cách chọn)

Chọn và hoán vị cặp ab: \(A_5^2=20\) cách

\(\Rightarrow1.20=20\) số chia hết cho 5

Xác suất: \(P=\dfrac{20}{120}=\dfrac{1}{6}\)

a: Số cách chọn là: \(C^3_{25}=2300\left(cách\right)\)

b: Số cách chọn là: \(C^1_{15}\cdot C^2_{24}=4140\left(cách\right)\)